Publications
2024
Gibertini,
P., Fehlings, L., Mikolajick, T., Chicca,
E., Kappel, D., & Covi, E. (2024).
Coincidence Detection with an Analog Spiking Neuron
Exploiting Ferroelectric Polarization. In ISCAS 2024 -
IEEE International Symposium on Circuits and Systems
(Proceedings - IEEE International Symposium on Circuits and
Systems). IEEE. https://doi.org/10.1109/ISCAS58744.2024.10558196
Quintana,
F. M., Perez-Peña, F., Galindo, P. L., Neftci, E. O.,
Chicca, E., & Khacef, L. (2024).
ETLP: event-based three-factor local plasticity for online
learning with neuromorphic hardware. Neuromorphic
computing and engineering, 4(3), Article
034006. https://doi.org/10.1088/2634-4386/ad6733
Schoepe,
T., Janotte, E., Milde, M. B., Bertrand, O. J.
N., Egelhaaf, M., & Chicca, E. (2024).
Finding the gap: Neuromorphic motion-vision in dense
environments. Nature Communications,
15(1), Article 817. https://doi.org/10.1038/s41467-024-45063-y
Schoepe,
T., Drix, D., Schüffny, F. M., Miko, R., Sutton,
S., Chicca, E., & Schmuker, M. (2024). Odour
Localization in Neuromorphic Systems. In 2024 IEEE
International Symposium on Circuits and Systems (ISCAS)
(Proceedings - IEEE International Symposium on Circuits and
Systems). IEEE. https://doi.org/10.1109/ISCAS58744.2024.10558186
2023
Nilsson,
M., Pina, T. J., Khacef, L., Liwicki,
F., Chicca, E., & Sandin, F. (2023). A
Comparison of Temporal Encoders for Neuromorphic Keyword Spotting
with Few Neurons. In International Joint Conference on
Neural Networks (IJCNN): Proceedings (Proceedings of the
International Joint Conference on Neural Networks). IEEE. https://doi.org/10.1109/IJCNN54540.2023.10191938
Richter,
O., Greatorex, H., Hučko, B.,
Cotteret, M., Soares Girão, W.,
Janotte, E., Mastella, M., & Chicca,
E. (2023). A Subthreshold Second-Order Integration
Circuit for Versatile Synaptic Alpha Kernel and Trace
Generation. In AMC ICONS2023 (pp. 1-4). Article 33
ACM Press. https://doi.org/10.1145/3589737.3606008
Schoepe,
T., Gutierrez-Galan, D., Dominguez-Morales, J. P.,
Greatorex, H., Jimenez-Fernandez, A., Linares-Barranco,
A., & Chicca, E. (2023). Closed-loop sound
source localization in neuromorphic systems.
Neuromorphic computing and engineering,
3(2), Article 024009. https://doi.org/10.1088/2634-4386/acdaba
Wang,
X., Risi, N., Talavera Martínez,
E., Chicca, E., & Azzopardi,
G. (2023). Fall detection with event-based data: A
case study. In N. Tsapatsoulis (Ed.), Computer Analysis
of Images and Patterns: 20th International Conference, CAIP 2023
Limassol, Cyprus, September 25–28, 2023 Proceedings, Part
II (pp. 33-42). (Lecture Notes in Computer Science; Vol.
14185). Springer. https://doi.org/10.1007/978-3-031-44240-7_4
Schoepe,
T., & Chicca, E. (2023). Finding the
Goal: Insect-Inspired Spiking Neural Network for Heading Error
Estimation. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2023 (pp. 4727-4733).
(IEEE International Conference on Intelligent Robots and Systems).
Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IROS55552.2023.10342210
Kugele,
A., Pfeil, T., Pfeiffer, M., & Chicca, E.
(2023). How Many Events Make an Object? Improving
Single-frame Object Detection on the 1 Mpx Dataset. In
Proceedings - 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, CVPRW 2023 (pp. 3913-3922).
(IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops; Vol. 2023-June). IEEE Computer Society. https://doi.org/10.1109/CVPRW59228.2023.00406
Bouanane,
M. S., Cherifi, D., Chicca, E., & Khacef,
L. (2023). Impact of spiking neurons leakages and
network recurrences on event-based spatio-temporal pattern
recognition. Frontiers in
Neuroscience, 17, Article 1244675. https://doi.org/10.3389/fnins.2023.1244675
Cotteret,
M., Richter, O., Mastella,
M., Greatorex, H., Janotte,
E., Soares Girão, W., Ziegler, M.,
& Chicca, E. (2023). Robust Spiking Attractor
Networks with a Hard Winner-Take-All Neuron Circuit. In
2023 IEEE International Symposium on Circuits and Systems
(ISCAS): Proceedings IEEE. https://doi.org/10.1109/ISCAS46773.2023.10181513
Khacef,
L., Klein, P., Cartiglia, M., Rubino,
A., Indiveri, G., & Chicca, E. (2023).
Spike-based local synaptic plasticity: a survey of
computational models and neuromorphic circuits.
Neuromorphic computing and engineering,
3(4), Article 042001. https://doi.org/10.1088/2634-4386/ad05da
Mastella,
M., Greatorex, H., Cotteret,
M., Janotte, E., Soares Girão,
W., Richter, O., & Chicca, E.
(2023). Synaptic Normalisation for On-Chip Learning in Analog
CMOS Spiking Neural Networks. In ACM ICONS2023:
Proceedings of the 2023 International Conference on Neuromorphic
Systems (pp. 1-4). Article 34 ACM Press. https://doi.org/10.1145/3589737.3606007
2022
Schoepe,
T., Janotte, E., Milde, M. B., Bertrand, O. J.
N., Egelhaaf, M., & Chicca, E. (2022).
Finding the Gap: Neuromorphic Motion Vision in Cluttered
Environments. Research Square Company. https://doi.org/10.21203/rs.3.rs-493274/v1
Kugele,
A., Pfeil, T., Pfeiffer, M., & Chicca, E.
(2022). Hybrid SNN-ANN: Energy-Efficient Classification and
Object Detection for Event-Based Vision. In C. Bauckhage, J.
Gall, & A. Schwing (Eds.), Pattern Recognition (pp.
297–312). (Pattern Recognition. DAGM GCPR), (Lecture Notes in
Computer Science; Vol. 13024). Springer. https://doi.org/10.1007/978-3-030-92659-5_19
Cotteret,
M., Greatorex, H., Ziegler, M., &
Chicca, E. (2022). Vector Symbolic Finite State
Machines in Attractor Neural Networks. arXiv. https://doi.org/10.48550/arXiv.2212.01196
2021
Gutierrez-Galan,
D., Schoepe, T., Dominguez-Morales, J. P.,
Jimenez-Fernandez, A., Chicca, E., &
Linares-Barranco, A. (2022). An Event-Based Digital Time
Difference Encoder Model Implementation for Neuromorphic
Systems. IEEE Transactions on Neural Networks and
Learning Systems, 33(5), 1959-1973. https://doi.org/10.1109/TNNLS.2021.3108047
Sengupta,
D., Mastella, M., Chicca,
E., & Kottapalli, A. G. P. (2022).
Skin-Inspired Flexible and Stretchable Electrospun Carbon
Nanofiber Sensors for Neuromorphic Sensing. Acs
applied electronic materials, 4(1), 308-315.
https://doi.org/10.1021/acsaelm.1c01010
Mastella,
M., & Chicca, E. (2021). A
Hardware-friendly Neuromorphic Spiking Neural Network for Frequency
Detection and Fine Texture Decoding. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
1-5). Article 9401377 IEEE. https://doi.org/10.1109/ISCAS51556.2021.9401377
Jürgensen,
A. M., Khalili, A., Chicca, E., Indiveri, G., &
Nawrot, M. P. (2021). A neuromorphic model of olfactory
processing and sparse coding in the Drosophila larva brain.
Neuromorphic computing and engineering,
1(2), Article 024008. https://doi.org/10.1088/2634-4386/ac3ba6
Dabbous,
A., Mastella, M., Natarajan, A., Chicca,
E., Valle, M., & Bartolozzi, C. (2021). Artificial
Bio-inspired Tactile Receptive Fields for Edge Orientation
Classification. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS) (pp. 1-5). Article 9401749 IEEE.
https://doi.org/10.1109/ISCAS51556.2021.9401749
Covi,
E., Duong, Q. T., Lancaster, S., Havel, V., Coignus, J., Barbot,
J., Richter, O., Klein, P., Chicca,
E., Grenouillet, L., Dimoulas, A., Mikolajick, T., &
Slesazeck, S. (2021). Ferroelectric Tunneling Junctions for
Edge Computing. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS) (pp. 1-5). Article 9401800 IEEE.
https://doi.org/10.1109/ISCAS51556.2021.9401800
Janotte,
E., Mastella, M., Chicca, E., &
Bartolozzi, C. (2021). Touch in Robots: A Neuromorphic
Approach. ERCIM News,
Brain-Inspired Computing(125), 34-51. https://ercim-news.ercim.eu/en125/special/brain-inspired-computing-introduction-to-the-special-theme
2020
Chicca,
E., & Indiveri, G. (2020). A recipe for creating
ideal hybrid memristive-CMOS neuromorphic processing
systems. Applied Physics Letters,
116(12), Article 120501. https://doi.org/10.1063/1.5142089
Pedretti,
G., Mannocci, P., Hashemkhani, S., Milo, V., Melnic, O.,
Chicca, E., & Ielmini, D. (2020). A Spiking
Recurrent Neural Network With Phase-Change Memory Neurons and
Synapses for the Accelerated Solution of Constraint Satisfaction
Problems. Ieee journal on exploratory solid-State
computational devices and circuits, 6(1),
89-97. Article 9086758. https://doi.org/10.1109/JXCDC.2020.2992691
Pedretti,
G., Milo, V., Hashemkhani, S., Mannocci, P., Melnic, O.,
Chicca, E., & Ielmini, D. (2020). A Spiking
Recurrent Neural Network with Phase Change Memory Synapses for
Decision Making. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS) IEEE. https://doi.org/10.1109/ISCAS45731.2020.9180513
Linares-Barranco,
A., Perez-Pena, F., Jimenez-Fernandez, A., & Chicca,
E. (2020). ED-BioRob: A Neuromorphic Robotic Arm With
FPGA-Based Infrastructure for Bio-Inspired Spiking Motor
Controllers. Frontiers in
neurorobotics, 14, Article 590163. https://doi.org/10.3389/fnbot.2020.590163
Kugele,
A., Pfeil, T., Pfeiffer, M., & Chicca, E. (2020).
Efficient Processing of Spatio-Temporal Data Streams With
Spiking Neural Networks. Frontiers in
Neuroscience, 14, Article 439. https://doi.org/10.3389/fnins.2020.00439
D'Angelo,
G., Janotte, E., Schoepe, T., O'Keeffe, J., Milde, M.
B., Chicca, E., & Bartolozzi, C. (2020).
Event-Based Eccentric Motion Detection Exploiting Time
Difference Encoding. Frontiers in
Neuroscience, 14, Article 451. https://doi.org/10.3389/fnins.2020.00451
Schoepe,
T., Gutierrez-Galan, D., Dominguez-Morales, J. P.,
Jimenez-Fernandez, A., Linares-Barranco, A., & Chicca,
E. (2020). Live Demonstration: Neuromorphic
Sensory Integration for Combining Sound Source Localization and
Collision Avoidance. Abstract from 2020 IEEE
International Symposium on Circuits & Systems, Seville,
Spain.
Schoepe,
T., Gutierrez-Galan, D., Dominguez-Morales, J. P.,
Jimenez-Fernandez, A., Linares-Barranco, A., & Chicca,
E. (2020). Live Demonstration: Neuromorphic Sensory
Integration for Combining Sound Source Localization and Collision
Avoidance. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS) IEEE. https://doi.org/10.1109/ISCAS45731.2020.9181257
2019
Thakur,
C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K.,
Qiao, N., Schemmel, J., Wang, R., Chicca, E., Hasler,
J. O., Seo, J., Yu, S., Cao, Y., van Schaik, A., &
Etienne-Cummings, R. (2019). Large-Scale Neuromorphic Spiking
Array Processors: A Quest to Mimic the Brain (vol 12, 891,
2018). Frontiers in Neuroscience,
12, Article 991. https://doi.org/10.3389/fnins.2018.00991
Schoepe,
T., Gutierrez-Galan, D., Dominguez-Morales, J. P.,
Jimenez-Fernandez, A., Linares-Barranco, A., & Chicca,
E. (2019). Neuromorphic Sensory Integration for
Combining Sound Source Localization and Collision Avoidance.
In 2019 IEEE Biomedical Circuits and Systems Conference
(BioCAS) IEEE. https://doi.org/10.1109/BIOCAS.2019.8919202
Suresh,
B., Bertele, M., Breyer, E. T., Klein, P.,
Mulaosmanovic, H., Mikolajick, T., Slesazeck, S., &
Chicca, E. (2019). Simulation of integrate-and-fire
neuron circuits using HfO2-based ferroelectric field
effect transistors. In 2019 26th IEEE International
Conference on Electronics, Circuits and Systems, ICECS 2019
(pp. 229-232). Article 8965004 Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1109/ICECS46596.2019.8965004
2018
Milo,
V., Chicca, E., & Ielmini, D. (2018).
Brain-Inspired Recurrent Neural Network with Plastic RRAM
Synapses. In 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) IEEE. https://doi.org/10.1109/ISCAS.2018.8351523
Basu,
A., Chang, M.-F., Chicca, E., Karnik, T., Li, H.,
& Seo, J.-S. (2018). Guest Editorial Low-Power, Adaptive
Neuromorphic Systems: Devices, Circuit, Architectures and
Algorithms. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 8(1), 1-5. https://doi.org/10.1109/JETCAS.2018.2810399
Thakur,
C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K.,
Qiao, N., Schemmel, J., Wang, R., Chicca, E., Hasler,
J. O., Seo, J., Yu, S., Cao, Y., van Schaik, A., &
Etienne-Cummings, R. (2018). Large-Scale Neuromorphic Spiking
Array Processors: A Quest to Mimic the Brain.
Frontiers in Neuroscience, 12,
Article 891. https://doi.org/10.3389/fnins.2018.00891
Mulaosmanovic,
H., Chicca, E., Bertele, M., Mikolajick, T., &
Slesazeck, S. (2018). Mimicking biological neurons with a
nanoscale ferroelectric transistor.
Nanoscale, 10(46), 21755-21763. https://doi.org/10.1039/c8nr07135g
Donati,
E., Perez-Peña, F., Bartolozzi, C., Indiveri, G., &
Chicca, E. (2018). Open-Loop Neuromorphic Controller
Implemented on VLSI Devices. In 2018 7th IEEE
International Conference on Biomedical Robotics and Biomechatronics
(Biorob) IEEE. https://doi.org/10.1109/BIOROB.2018.8487937
Milo,
V., Pedretti, G., Laudato, M., Bricalli, A., Ambrosi, E., Bianchi,
S., Chicca, E., & Ielmini, D. (2018).
Resistive switching synapses for unsupervised learning in
feed-forward and recurrent neural networks. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS) IEEE.
https://doi.org/10.1109/ISCAS.2018.8351824
Milde,
M. B., Bertrand, O. J. N., Ramachandran, H., Egelhaaf, M.,
& Chicca, E. (2018). Spiking Elementary Motion
Detector in Neuromorphic Systems. Neural
computation, 30(9), 2384-2417. https://doi.org/10.1162/neco_a_01112
Ziegler,
M., Wenger, C., Chicca, E., & Kohlstedt, H.
(2018). Tutorial: Concepts for closely mimicking biological
learning with memristive devices: Principles to emulate cellular
forms of learning. Journal of Applied
Physics, 124(15), Article 152003. https://doi.org/10.1063/1.5042040
Rüttgers,
S., Klein, P., Ziegler, M., & Chicca,
E. (2018). Unsupervised MNIST Learning in an
analog Spiking Neural Network using digital memristive
devices. Abstract from Conference in Cognitive
Computing 2018 , Hannover, Germany.
2017
Milo,
V., Ielmini, D., & Chicca, E. (2017).
Attractor networks and associative memories with STDP
learning in RRAM synapses. In 2017 IEEE International
Electron Devices Meeting (IEDM) IEEE. https://doi.org/10.1109/IEDM.2017.8268369
Perez-Peña,
F., Leñero-Bardallo, J. A., Linares-Barranco, A., &
Chicca, E. (2017). Towards Bioinspired Close-Loop
Local Motor Control: A Simulated Approach Supporting Neuromorphic
Implementations. In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS) IEEE. https://doi.org/10.1109/ISCAS.2017.8050808
2016
Huayaney,
F. L. M., & Chicca, E. (2016). A VLSI
Implementation of a calcium-based plasticity learning model.
In 2016 IEEE International Symposium on Circuits and Systems
(ISCAS) IEEE. https://doi.org/10.1109/ISCAS.2016.7527248
Chang,
J., Sonkusale, S., Yalcin, M., Ogunfunmi, T., Vanderwalle, J., Zhu,
W.-P., Liu, Z., Chang, R. C.-H., Chicca, E.,
Callegari, S., Chu, C.-C., Dudek, P., Lee, G. G., & Chowdhury,
M. (2016). Current And Emergent Topics. In F.
Maloberti, & A. C. Davies (Eds.), A Short History of
Circuits And Systems (pp. 255-265). River Publishers.
Mayr,
C. G., Sheik, S., Bartolozzi, C., & Chicca, E.
(2016). Editorial: Synaptic Plasticity for Neuromorphic
Systems. Frontiers in Neuroscience,
10, Article 214. https://doi.org/10.3389/fnins.2016.00214
Biolek,
D., Carrara, S., Chicca, E., Corinto, F., Georgiou,
J., Linares-Barranco, B., Prodromakis, T., Spiga, S., &
Tetzlaff, R. (2016). EU COST action IC1401 - Pushing the
frontiers of memristive devices to systems. In 2016 18th
Mediterranean Electrotechnical Conference (MELECON) IEEE. https://doi.org/10.1109/MELCON.2016.7495309
Nease,
S., & Chicca, E. (2016). Floating-Gate-Based
Intrinsic Plasticity with Low-Voltage Rate Control. In
2016 IEEE International Symposium on Circuits and Systems
(ISCAS) (pp. 2507-2510). IEEE. https://doi.org/10.1109/ISCAS.2016.7539102
Schirmer,
M., Stradolini, F., Carrara, S., & Chicca, E.
(2016). FPGA-based Approach for Automatic Peak Detection in
Cyclic Voltammetry. In 2016 IEEE International
Conference on Electronics, Circuits and Systems (ICECS) (pp.
65-68). IEEE. https://doi.org/10.1109/ICECS.2016.7841133
Huayaney,
F. L. M., Nease, S., & Chicca, E. (2016).
Learning in Silicon Beyond STDP: A Neuromorphic
Implementation of Multi-Factor Synaptic Plasticity With
Calcium-Based Dynamics. IEEE Transactions on
Circuits and Systems I - Regular papers,
63(12), 2189-2199. https://doi.org/10.1109/TCSI.2016.2616169
Engelmann,
J., Walther, T., Grant, K., Chicca, E., &
Gomez-Sena, L. (2016). Modeling latency code processing in
the electric sense: from the biological template to its VLSI
implementation. Bioinspiration &
biomimetics, 11(5), Article 055007. https://doi.org/10.1088/1748-3190/11/5/055007
2015
Staar,
B., Schirmer, M., Bai-Rossi, C., Micheli, G. D., Carrara, S.,
& Chicca, E. (2015). A neural approach to drugs
monitoring for personalized medicine. In 2015
International Joint Conference on Neural Networks (IJCNN)
IEEE. https://doi.org/10.1109/IJCNN.2015.7280611
Milde,
M. B., Bertrand, O. J. N., Benosman, R., Egelhaaf, M., &
Chicca, E. (2015). Bioinspired event-driven collision
avoidance algorithm based on optic flow. In 2015
International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP) IEEE. https://doi.org/10.1109/EBCCSP.2015.7300673
Richter,
O., Reinhart, R. F., Nease, S., Steil, J., &
Chicca, E. (2015). Device mismatch in a
neuromorphic system implements random features for
regression. 1-4. Paper presented at 2015 IEEE
Biomedical Circuits and Systems Conference (BioCAS). https://doi.org/10.1109/BioCAS.2015.7348416
Nease,
S., & Chicca, E. (2015). Power-Efficient
Estimation of Silicon Neuron Firing Rates with Floating-Gate
Transistors. In 2015 European Conference on Circuit
Theory and Design (ECCTD) IEEE. https://doi.org/10.1109/ECCTD.2015.7300005
Thomas,
A., Niehoerster, S., Fabretti, S., Shepheard, N., Kuschel, O.,
Kuepper, K., Wollschlaeger, J., Kzysteczko, P., & Chicca,
E. (2015). Tunnel junction based memristors as
artificial synapses. Frontiers in
Neuroscience, 9, Article 241. https://doi.org/10.3389/fnins.2015.00241
2014
Perez-Peña,
F., Linares-Barranco, A., & Chicca, E. (2014).
An approach to motor control for spike-based neuromorphic
robotics. In 2014 IEEE Biomedical Circuits and Systems
Conference (BioCAS) Proceedings (pp. 528-531). IEEE. https://doi.org/10.1109/BioCAS.2014.6981779
Coath,
M., Sheik, S., Chicca, E., Indiveri, G., Denham, S.
L., & Wennekers, T. (2014). A robust sound perception
model suitable for neuromorphic implementation.
Frontiers in Neuroscience, 7,
Article 278. https://doi.org/10.3389/fnins.2013.00278
Sandin,
F., Khan, A. I., Dyer, A. G., Amin, A. H. M., Indiveri, G.,
Chicca, E., & Osipov, E. (2014). Concept Learning
in Neuromorphic Vision Systems: What Can We Learn from
Insects? Journal of Software Engineering and
Applications, 7, 387-395. https://doi.org/10.4236/jsea.2014.75035
Ramachandran,
H., Weber, S., Aamir, S. A., & Chicca, E. (2014).
Neuromorphic Circuits for Short-term Plasticity with Recovery
Control. In 2014 IEEE International Symposium on
Circuits and Systems (ISCAS) (pp. 858-861). IEEE. https://doi.org/10.1109/ISCAS.2014.6865271
Chicca,
E., Stefanini, F., Bartolozzi, C., & Indiveri, G.
(2014). Neuromorphic Electronic Circuits for Building
Autonomous Cognitive Systems. Proceedings of the
IEEE, 102(9), 1367-1388. https://doi.org/10.1109/JPROC.2014.2313954
Chicca,
E., Schmuker, M., & Nawrot, M. P. (2014).
Neuromorphic Sensors, Olfaction. In D. Jaeger, &
R. Jung (Eds.), Encyclopedia of Computational Neuroscience
Springer New York LLC. https://doi.org/10.1007/978-1-4614-7320-6_119-2
2013
Rost,
T., Ramachandran, H., Nawrot, M. P., & Chicca, E.
(2013). A neuromorphic approach to auditory pattern
recognition in cricket phonotaxis. In 2013 European
Conference on Circuit Theory and Design (ECCTD) IEEE. https://doi.org/10.1109/ECCTD.2013.6662247
Aamir,
S. A., Engelmann, J., Gomez, L., & Chicca, E.
(2013). A Neuromorphic VLSI Implementation of a Simplified
Electrosensory System in a Weakly Electric Fish.
Morabito,
F. C., Andreou, A. G., & Chicca, E. (2013).
Neuromorphic Engineering: From Neural Systems to Brain-Like
Engineered Systems. Neural Networks,
45, 1-3. https://doi.org/10.1016/j.neunet.2013.07.001
Neftci,
E., Binas, J., Rutishauser, U., Chicca, E., Indiveri,
G., & Douglas, R. J. (2013). Synthesizing cognition in
neuromorphic electronic systems. Proceedings of
the National Academy of Sciences of the United States of
America, 110(37), E3468-E3476. https://doi.org/10.1073/pnas.1212083110
2012
Sheik,
S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T.,
& Chicca, E. (2012). Emergent auditory feature
tuning in a real-time neuromorphic VLSI system.
Frontiers in Neuroscience, 6,
Article 17. https://doi.org/10.3389/fnins.2012.00017
Sheik,
S., Chicca, E., & Indiveri, G. (2012).
Exploiting Device Mismatch in Neuromorphic VLSI Systems to
Implement Axonal Delays. In The 2012 International Joint
Conference on Neural Networks (IJCNN) (pp. 1940-1945). IEEE.
https://doi.org/10.1109/IJCNN.2012.6252636
Corneil,
D., Sonnleithner, D., Neftci, E., Chicca, E., Cook,
M., Indiveri, G., & Douglas, R. J. (2012). Function
approximation with uncertainty propagation in a VLSI spiking neural
network. In The 2012 International Joint Conference on
Neural Networks (IJCNN) (pp. 2990-2996). IEEE. https://doi.org/10.1109/IJCNN.2012.6252780
Corneil,
D., Sonnleithner, D., Neftci, E., Chicca, E., Cook,
M., Indiveri, G., & Douglas, R. J. (2012). Real-time
inference in a VLSI spiking neural network. In 2012 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
2425-2428). IEEE. https://doi.org/10.1109/ISCAS.2012.6271788
Neftci,
E., Binas, J., Chicca, E., Indiveri, G., &
Douglas, R. J. (2012). Systematic Construction of Finite
State Automata Using VLSI Spiking Neurons. In T. J.
Prescott, N. F. Lepora, A. Mura, & P. F. M. J. Verschure
(Eds.), Biomimetic and Biohybrid Systems: First International
Conference, Living Machines 2012, Barcelona, Spain, July 9-12,
2012. Proceedings (Vol. 7375, pp. 382-383). (Lecture Notes in
Computer Science; Vol. 7375). Springer Berlin / Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_52
2011
Neftci,
E., Chicca, E., Indiveri, G., & Douglas, R.
(2011). A Systematic Method for Configuring VLSI Networks of
Spiking Neurons. Neural computation,
23(10), 2457-2497. https://doi.org/10.1162/NECO_a_00182
Indiveri,
G., & Chicca, E. (2011). A VLSI neuromorphic
device for implementing spike-based neural networks. In B.
Apolloni, S. Bassis, A. Esposito, & C. F. Morabito (Eds.),
Neural Nets WIRN11 - Proceedings of the 21st Italian Workshop
on Neural Nets (Vol. 234, pp. 305-316). ( Frontiers in
Artificial Intelligence and Applications; Vol. 234). IOS Press. https://doi.org/10.3233/978-1-60750-972-1-305
Sheik,
S., Stefanini, F., Neftci, E., Chicca, E., &
Indiveri, G. (2011). Systematic configuration and automatic
tuning of neuromorphic systems. In 2011 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
873-876). IEEE. https://doi.org/10.1109/ISCAS.2011.5937705
Moraud,
E. M., & Chicca, E. (2011). Toward
Neuromorphic Odor Tracking: Perspectives for space
exploration. Acta Futura,
4(8), 9-19. https://doi.org/10.2420/AF04.2011.09
2010
Beyeler,
M., Stefanini, F., Proske, H., Galizia, G., & Chicca,
E. (2010). Exploring Olfactory Sensory Networks:
Simulations and Hardware Emulation. In 2010 Biomedical
Circuits and Systems Conference (BioCAS) (pp. 270-273). IEEE.
https://doi.org/10.1109/BIOCAS.2010.5709623
Neftci,
E., Chicca, E., Cook, M., Indiveri, G., & Douglas,
R. (2010). Live demonstration: State-dependent sensory
processing in networks of VLSI spiking neurons. In ISCAS
2010 - 2010 IEEE International Symposium on Circuits and Systems:
Nano-Bio Circuit Fabrics and Systems (pp. 2788). Article
5537006 IEEE. https://doi.org/10.1109/ISCAS.2010.5537006
Indiveri,
G., Stefanini, F., & Chicca, E. (2010).
Spike-based learning with a generalized integrate and fire
silicon neuron. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
1951-1954). IEEE. https://doi.org/10.1109/ISCAS.2010.5536980
Emre,
N., Chicca, E., Indiveri, G., & Douglas, R.
(2010). State-dependent sensory processing in distributed
networks of vlsi spiking neurons. Paper presented at
4th International Conference on Cognitive Systems, CogSys 2010,
Zurich, Switzerland.
Neftci,
E., Chicca, E., Cook, M., Indiveri, G., & Douglas,
R. J. (2010). State-dependent sensory processing in networks
of VLSI spiking neurons. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
2789-2792). IEEE. https://doi.org/10.1109/ISCAS.2010.5537007
2009
Indiveri,
G., Chicca, E., & Douglas, R. J. (2009).
Artificial Cognitive Systems: From VLSI Networks of Spiking
Neurons to Neuromorphic Cognition. Cognitive
computation, 1(2), 119-127. https://doi.org/10.1007/s12559-008-9003-6
2008
Neftci,
E., Chicca, E., Indiveri, G., Slotine, J.-J., &
Douglas, R. J. (2008). Contraction Properties of VLSI
Cooperative Competitive Neural Networks of Spiking Neurons.
In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.),
Advances in Neural Information Processing Systems (NIPS)
(Vol. 20, pp. 1073-1080). The MIT Press.
Tapson,
J., Diaz, J., Sander, D., Gurari, N., Chicca, E.,
Pouliquen, P., & Etienne-Cummings, R. (2008). The Feeling
of Color: A Haptic Feedback Device for the Visually
Disabled. In 2008 IEEE Biomedical Circuits and Systems
Conference (BIOCAS) (pp. 381-384). IEEE. https://doi.org/10.1109/BIOCAS.2008.4696954
2007
Chicca,
E., Whatley, A. M., Lichtsteiner, P., Dante, V., Delbruck,
T., Del Giudice, P., Douglas, R. J., & Indiveri, G. (2007).
A Multichip Pulse-Based Neuromorphic Infrastructure and Its
Application to a Model of Orientation Selectivity.
IEEE Transactions on Circuits and Systems I - Regular
papers, 54(5), 981-993. https://doi.org/10.1109/TCSI.2007.893509
Chicca,
E., Indiveri, G., & Douglas, R. J. (2007). Context
dependent amplification of both rate and event-correlation in a
VLSI network of spiking neurons. In B. Schölkopf, J.
Platt, & T. Hofmann (Eds.), Advances in Neural Information
Processing Systems 19 - Proceedings of the 2006 Conference
(pp. 257-264). (Advances in Neural Information Processing Systems).
MIT Press.
Wang,
H.-P., Chicca, E., Indiveri, G., & Sejnowski, T.
J. (2007). Reliable Computation in Noisy Backgrounds Using
Real-Time Neuromorphic Hardware. In 2007 IEEE Biomedical
Circuits and Systems Conference (BioCAS) (pp. 71-74). IEEE. https://doi.org/10.1109/BIOCAS.2007.4463311
2006
Chicca,
E. (2006). A Neuromorphic VLSI System for Modeling
Spike-Based Cooperative Competitive Neural Networks.
[Thesis fully external, UNI, ETH Zurich, ETH, Inst Neuroinformat].
ETH Zurich. https://doi.org/10.3929/ethz-a-005275753
Indiveri,
G., Chicca, E., & Douglas, R. (2006). A VLSI
array of low-power spiking neurons and bistable synapses with
spike-timing dependent plasticity. IEEE
Transactions on Neural Networks, 17(1),
211-221. https://doi.org/10.1109/TNN.2005.860850
Chicca,
E., Lichtsteiner, P., Delbruck, T., Indiveri, G., &
Douglas, R. J. (2006). Modeling Orientation Selectivity Using
a Neuromorphic Multi-Chip System. In 2006 IEEE
International Symposium on Circuits and Systems (ISCAS) (pp.
1235-1238). IEEE. https://doi.org/10.1109/ISCAS.2006.1692815
2004
Chicca,
E., Indiveri, G., & Douglas, R. J. (2004). An
event-based VLSI network of integrate-and-fire neurons. In
2004 IEEE International Symposium on Circuits and Systems
(ISCAS) (Vol. 5). IEEE. https://doi.org/10.1109/ISCAS.2004.1329536
Indiveri,
G., Chicca, E., & Douglas, R. J. (2004). A
VLSI reconfigurable network of integrate-and-fire neurons with
spike-based learning synapses. In Proceedings of 12th
European Symposium on Artificial Neural Networks (ESANN04)
(pp. 405-410). ESANN.
Rubin,
D. B., Chicca, E., & Indiveri, G. (2004).
Characterizing the firing properties of an adaptive analog
VLSI neuron. In AJ. Ijspeert, M. Murata, & N. Wakamiya
(Eds.), Biologically Inspired Approaches to Advanced
Information Technology (pp. 189-200). (Lecture Notes in
Computer Science; Vol. 3141). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27835-1_15
Rubin,
D. B.-D., Chicca, E., & Indiveri, G. (2004).
Firing proprieties of an adaptive analog VLSI neuron.
In Proceedings of Bio-ADIT 2004 , Lausanne (pp.
314-327)
2003
Chicca,
E., Indiveri, G., & Douglas, R. J. (2003). An
adaptive silicon synapse. In Proceedings of the 2003
International Symposium on Circuits and Systems ISCAS '03 (pp.
I81-I84). IEEE. https://doi.org/10.1109/ISCAS.2003.1205505
Chicca,
E., Badoni, D., Dante, V., D'Andreagiovanni, M., Salina, G.,
Carota, L., Fusi, S., & Del Giudice, P. (2003). A VLSI
recurrent network of integrate-and-fire neurons connected by
plastic synapses with long-term memory. IEEE
Transactions on Neural Networks, 14(5),
1297-1307. https://doi.org/10.1109/TNN.2003.816367
2001
Chicca,
E., & Fusi, S. (2001). Stochastic synaptic
plasticity in deterministic aVLSI networks of spiking
neurons. In F. Rattay (Ed.), Proceedings of the World
Congress on Neuroinformatics (pp. 468-477). (ARGESIM Reports).
ARGESIM/ASIM Verlag.
Last modified: | 09 June 2023 8.36 p.m. |