Skip to ContentSkip to Navigation
About us Latest news News News articles

Science paper: Powerful jets blowing material out of galaxy

05 September 2013
Rafaella Morganti
Rafaella Morganti

Astronomers using a worldwide network of radio telescopes have found strong evidence that a powerful jet of material propelled to nearly light speed by a galaxy’s central black hole is blowing massive amounts of gas out of the galaxy. This process, they said, is limiting the growth of the black hole and the rate of star formation in the galaxy, and thus is a key to understanding how galaxies develop. The researchers published their findings in the 6 September issue of the journal Science.

Text: NRAO

Astronomers have theorized that many galaxies should be more massive and have more stars than is actually the case. Scientists proposed two major mechanisms that would slow or halt the process of mass growth and star formation -- violent stellar winds from bursts of star formation and pushback from the jets powered by the galaxy’s central, supermassive black hole.

“With the finely-detailed images provided by an intercontinental combination of radio telescopes, we have been able to see massive clumps of cold gas being pushed away from the galaxy’s center by the black-hole-powered jets,” said Raffaella Morganti, of the Netherlands Institute for Radio Astronomy and the University of Groningen.

Image of the jet stream
Image of the jet stream

The scientists studied a galaxy called 4C 12.50, nearly 1.5 billion light-years from Earth. They chose this galaxy because it is at a stage where the black-hole “engine” that produces the jets is just turning on. As the black hole, a concentration of mass so dense that not even light can escape, pulls material toward it, the material forms a swirling disk surrounding the black hole. Processes in the disk tap the tremendous gravitational energy of the black hole to propel material outward from the poles of the disk.

At the ends of both jets, the researchers found clumps of hydrogen gas moving outward from the galaxy at 1,000 kilometers per second. One of the clouds has much as 16,000 times the mass of the Sun, while the other contains 140,000 times the mass of the Sun. The larger cloud, the scientists said, is roughly 160 by 190 light-years in size.

“This is the most definitive evidence yet for an interaction between the swift-moving jet of such a galaxy and a dense interstellar gas cloud,” Morganti said. “We believe we are seeing in action the process by which an active, central engine can remove gas -- the raw material for star formation -- from a young galaxy,” she added.

The VLBI network
The VLBI network

The scientists also said their observations indicate that the jets from the galaxy’s core can stretch and deform clouds of interstellar gas to expand their “pushing” effect beyond the narrow width of the jets themselves. In addition, they reported that, at 4C 12.50’s stage of development, the jets may turn on and off and so periodically repeat the process of removing gas from the galaxy.

In July, another team of scientists, using the Atacama Large Millimeter/submillimeter Array (ALMA), announced they had found gas being blown from a more-nearby galaxy, called NGC 253, by an intense burst of star formation [ http://www.nrao.edu/pr/2013/starburst-bust ].

“Both processes are thought to be at work, often simultaneously, in young galaxies to regulate the growth of their central black holes as well as the rate at which they can form new stars,” Morganti said.

Last year, Morganti was awarded a prestigious ERC Advanced grant by the European Research Council.

Morganti and her team used radio telescopes in Europe and the U.S., combining their signals to make one giant, intercontinental telescope. In the U.S., these included the National Science Foundation’s Very Long Baseline Array (VLBA), a continent-wide system of radio telescopes ranging from Hawaii, across the U.S. mainland, to St. Croix in the Virgin Islands, and one antenna from the Karl G. Jansky Very Large Array (VLA) in New Mexico. The European radio telescopes they used are in Effelsberg, Germany; Westerbork, the Netherlands; and Onsala, Sweden. The extremely high resolving power, or ability to see fine detail, provided by such a far-flung system was essential to pinpointing the location of the gas clouds affected by the galaxy’s jets.

Source: press release National Radio Astronomy Observatory

Last modified:10 June 2015 12.01 p.m.
View this page in: Nederlands

More news

  • 16 December 2024

    Jouke de Vries: ‘The University will have to be flexible’

    2024 was a festive year for the University of Groningen. Jouke de Vries, the chair of the Executive Board, looks back.

  • 10 June 2024

    Swarming around a skyscraper

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 24 May 2024

    Lustrum 410 in pictures

    Lustrum 410 in pictures: A photo report of the lustrum 2024