
1520 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014
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Abstract—Using spectral graph theory and especially its graph
comparison techniques, we propose new methodologies to allocate
coupling strengths to guarantee global complete synchronization
in complex networks. The key step is that all the eigenvalues of
the Laplacian matrix associated with a given network can be es-
timated by utilizing flexibly topological features of the network.
The proposed methodologies enable the construction of different
coupling-strength combinations in response to different knowledge
about subnetworks. Adaptive allocation strategies can be carried
out as well using only local network topological information. Be-
sides formal analysis, we use simulation examples to demonstrate
how to apply the methodologies to typical complex networks.

Index Terms—Complex networks, coupling strength allocation,
spectral graph theory, synchronization.

I. INTRODUCTION

S YNCHRONIZATION phenomena in various complex
networks have attracted great attention in the past decades

[2]–[9]. This research area has many diverse applications,
such as flocking behavior in birds and social insects, social
dynamics in populations, and coordination strategies in mobile
autonomous robots. Several significant systematic approaches
have been proposed in this research field. The master stability
function method has been established as a powerful tool in [2]
to study the local synchronization problem for linearly cou-
pled chaotic systems. In [5], a general systematic framework
was presented for the study of synchronization of nonlinear
dynamical systems with diffusive couplings. When deriving
various synchronization conditions, one focus is how to assign
coupling strengths to the interconnections between systems,
and intuitively it is natural to assume that the synchronized
behavior of any two systems is always possible to take place
provided that the coupling strength between them is sufficiently
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large [5]. In order to provide a lower bound on the coupling
strengths for interconnected systems, for a network with diffu-
sive and symmetric couplings, one can further investigate the
synchronizability of the network by examining the magnitude
of the second smallest eigenvalue of the Laplacian matrix,
called algebraic connectivity, of the network [10]. A range
of related research problems, such as robustness issues, have
been studied following this approach [11]–[13]. In parallel, a
different line of research has also been developed to study the
global synchronization of complex networks, which uses exten-
sively the topological information of the graph that describes
the couplings between the systems in a network [14]. The main
idea is to construct a bound on the total length of all the paths
passing through a chosen edge in the graph. This bound can
then be exploited to allocate coupling strengths to all the edges
in order to achieve global synchronization in the network. One
aim of this paper is to bridge the main results developed sepa-
rately in [5] and [14] with these two different approaches and
propose new coupling strength allocation methods to guarantee
global complete synchronization in complex networks. Newly
obtained results from spectral graph theory will be utilized
toward this end.
Graph comparison techniques have been developed in the

past to bound the second smallest eigenvalues of Laplacian ma-
trices of undirected graphs [15]–[17], where the bounds are
obtained by embedding complete graphs into the graph under
study. More general ideas for graph comparison have been re-
ported in [18], [19], where the comparison of combinatorial fea-
tures can be carried out between two arbitrary graphs with the
same vertex set for the purpose of bounding any eigenvalues
of Laplacian matrices of the graphs. In this paper, we follow
the approach delineated in [18], [19] to study conditions based
on graph comparison for synchronization in complex networks.
By doing so, we prove that the synchronization condition given
in [14] for allocating coupling strengths can be explained by
comparing the network graph with the corresponding complete
graph. We then propose different coupling strength allocation
strategies by comparing the network graphs with other typical
network structures. Since adaptive allocations can be carried out
using only local network topological information, our method is
especially useful in large, time-varying, complex networks. So
the main contribution of the paper lies in a set of new method-
ologies using graph comparison to allocate coupling strengths
to guarantee complete synchronization in complex networks.
The rest of the paper is organized as follows. In Section II,

we review a classical complex dynamical network model and
some relevant results in the literature on synchronization. Using
tools from spectral graph theory, we study conditions based
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on graph comparison for synchronization in complex dynam-
ical networks and propose new methods to allocate coupling
strengths, in Sections III and IV. In Section V we look into syn-
chronizability of networks using graph comparison tools devel-
oped in the previous sections. Section VI provides numerical
simulations on network synchronization. Finally, conclusions
are given in Section VII.

II. PROBLEM SETUP AND PRELIMINARIES

We consider a network of coupled identical oscillators
whose dynamics are described by

(1)

where is the state of the th oscillator,
denotes the identical self-dynamics of each oscillator,

describes the time-varying strength of the coupling
from oscillator to at time , ,
and the diagonal (0,1)-matrix determines through
which components of the states that the oscillators are coupled
together. We assume that the couplings between oscillators are
symmetric, namely . The couplings between the
oscillators can be conveniently described by a weighted graph

with the vertex set , the
edge set , and the weight function .
There is an edge between vertices and if and only if

and the weights may change with time. Let
be the Laplacian matrix [20] of the graph .

Then the th entry of is for .
System (1) has been used widely to study under what condi-

tions the coupled oscillators can achieve asymptotically global
and complete synchronization, where for any initial condition,

as for all [5]. In this paper, we
explore such synchronization conditions using spectral graph
theory. Toward this end, we make one standard technical as-
sumption about system (1).
Assumption 1: For a sufficiently large positive constant , it

holds that

(2)
for some and for any .
Here the constant is determined by both the function and

the inner coupling matrix . Assumption 1 implies that two
coupled oscillators are always able to get synchronized when
their coupling is sufficiently strong. An equivalent assumption
has been made in [14], [21], and [22], which guarantee that the
whole network of oscillators can get synchronized when the
coupling strengths between oscillators are sufficiently large. Ex-
planations on the equivalence of the two assumptions are given
in the Appendix. Such networks that satisfy Assumption 1 in-
clude most of the coupled limit-cycle or chaotic oscillators. For
those networks that do not satisfy this assumption, it is likely
that increasing the coupling strengths between some pairs of os-
cillators may destroy the network’s locally stable synchronous
states [2]. We refer the interested reader to [2] and a more recent
paper [23] for a systematic classification of different network
synchronization behavior.

In the following, we introduce a general synchronization cri-
terion for networks with time-varying dynamics. For a matrix

, we say (respectively, ) if is pos-
itive (respectively, non-negative) for all nonzero . We
use to denote the set of irreducible, symmetric matrices that
have zero row sums and non-positive off-diagonal elements.
Lemma 1 (Minor Rephrasing of Theorem 2 from [10] and

a Result in Chapter 4 From [5]): Let be a -by- time-
varying matrix and a -by- symmetric, positive definite ma-
trix such that

for some and all . Then system (1)
synchronizes globally if there exists an -by- matrix
such that

(3)

for all , where denotes the Kronecker product [24].
Now we present a synchronization criterion using properties

of graphs.
Theorem 1: Under Assumption 1, the synchronization man-

ifold of system (1) is globally asymptotically stable if there ex-
ists a connected undirected graph with the same vertex set
of such that

(4)

Proof: Assumption 1 on the self-dynamics is equiva-
lent to the condition that

when we set , .
To apply Lemma 1, we choose , , and

. Then from (3) we have
, i.e., .

Since , this is satisfied if . There-
fore, the complete synchronization of system (1) is guaranteed
if for all .

III. SYNCHRONIZATION CRITERIA USING GRAPH
COMPARISON WITH COMPLETE GRAPHS

In this section, we look at graphical synchronization criteria
for undirected complex networks. Toward this end, we intro-
duce some notations and discuss some algebraic properties of
graphs. We say if . Similarly, we say
if . We extend this notation for graphs as follows.
Definition 1: For two undirected graphs and with the

same vertex set , we say

if their Laplacian matrices satisfy .
For a graph with vertex set , we use , ,

to denote the th smallest eigenvalue of . For graphs and
with the same vertex set, we consider some multiple of

graph . Using Courant–Fischer Theorem [19], one can easily
prove the following result.
Lemma 2: If and are the graphs with the same vertex set
satisfying , then

for all .
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Theorem 1 gives a synchronization condition based on graph
comparison. One natural idea is to compare the system graph

with the complete graph. Let denote the unweighted,
undirected complete graph [20] with vertices. If we take the
graph in Theorem 1 to be , then one has that the synchro-
nization manifold of system (1) is globally asymptotically stable
if for all . Note that where
is the -by- all-one matrix. We know then

. Thus, the synchroniza-
tion manifold of system (1) is globally asymptotically stable
if . So we have arrived at the following
theorem.
Theorem 2: Suppose that graph is undirected and con-

nected. Under Assumption 1, the synchronization manifold of
system (1) is globally asymptotically stable if

(5)

The implication of Theorem 2 is profound. For any coupled
oscillators whose couplings are described by a weighted undi-
rected graph , one can always examine whether

holds by comparing to the complete graph with
identical edge weight . Now we show that the inequality in
Theorem 2 can be stated differently.
Theorem 3: For an undirected graph , it holds that

Proof: “ ”: From for each and
Lemma 2, we know for each .
Since , it then must be true that for
each .
“ ”: Since the all-one vector is in the kernel

of and , to prove , it suffices to
prove that for any that is
not in the kernel of and . Furthermore, one can easily
see that it suffices to prove that
for all the vector orthogonal to .
For any vector orthogonal to , from Courant–Fischer the-

orem [19], one has

Thus one has

Since , we know for all
. Using the fact that , we have

which implies that for all , namely
.

Remark 1: In Theorem 3 in [10], a lower bound for
has been given to guarantee the synchronization of coupled dy-

namical oscillators under certain assumptions. In Theorem 3, we
have shown the equivalence between graph comparisons and
bounding from below the second smallest eigenvalues of the
Laplacian matrices of graphs.
To apply more tools from spectral graph theory, we need to

introduce another equivalent definition of the Laplacian matrix
of graphs. Following [18], we define the elementary Laplacian

to be the Laplacian of the graph containing just the edge
of unit weight between vertices and . Then for an undirected
graph consisting of the vertex set , the
edge set , and the weight function , its Laplacian
matrix has the form

(6)

Moreover, we say graph is unweighted if the weights
for all .
Now we introduce two graphical inequalities, which have

been proved in [18].
Lemma 3 [18]: Let . It holds that

where .
If we take , then Lemma 3

becomes the following result.
Lemma 4 [18]: It holds that

With these graphical tools at hand, Theorem 2 can be fur-
ther used to give graphical conditions for the synchronization
of system (1). In the following, we present some sufficient con-
ditions for synchronization using features of graph . Con-
sider a set of paths , one for
each pair of distinct vertices and . We denote the length of
the path by , which is the number of edges in . We
assume that there are altogether edges in the edge set of
graph . If we label the edges of by , then the
lower bounds on the coupling strengths of all the edges can be
constructed to guarantee that the inequality in Theorem 2 holds.
We state it more formally as follows.
Theorem 4: Suppose that graph is undirected and con-

nected. Under Assumption 1, the synchronization manifold of
system (1) is globally asymptotically stable if

where is the sum of the lengths of all
those paths in that contain edge .

Proof: From the definition introduced by (6), it holds that
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For each pair of where , we choose one path
in that connects and . Then one can apply Lemma 4 by
comparing the sum of all the Laplacian matrices , ,
of all the edges along this chosen path and the Laplacian matrix

of the single edge , which leads to

(7)

Choosing such paths in the topological graph for all the pairs
of where , one obtains that

where has been defined in Theorem 4. And

the last inequality holds trivially when for
each edge . Therefore, the constructed coupling strengths
for guarantee that holds. Thus
we arrive at the conclusion.
Remark 2: Theorem 4 presents a synchronization condition

for allocating coupling strengths for . The same result has
been obtained in [14]. Here we give a different interpretation
of the result and prove it by using combinatorial features of the
topological graph , which leads to the construction of efficient
algorithms determining the coupling strengths as we will show
later. In addition, our allocationmethod using graph comparison
is much easier to implement in applications.
Up to now, we have only compared graph with the com-

plete graph . It is natural to ask what different synchroniza-
tion criteria can be obtained if we compare with other
graphs. We explore in this direction in the next section.

IV. SYNCHRONIZATION CRITERIA USING GRAPH COMPARISON
WITH OTHER TYPICAL GRAPHS

A. Coupling Strength Allocation

In Theorem 2, the synchronization criteria are given based
on the comparison between the given graph with the com-
plete graph. In addition, Theorem 4 gives lower bounds of cou-
pling strengths in order to achieve complete synchronization. In
what follows, we show how to allocate coupling strengths sys-
tematically by comparing with some typical graphs. We
list below some results about the eigenvalues of some typical
graphs.
Lemma 5 [18]: (a) The Laplacian matrix of the complete

graph has eigenvalue 0 with multiplicity 1 and with mul-
tiplicity .
(b) The Laplacianmatrix of the ring graph has eigenvalues

for .

(c) The Laplacian matrix of the path graph has eigen-
values for .
(d) The Laplacian matrix of the star graph has 1 as its

second smallest eigenvalue.
In fact, one can compare any two undirected and connected

graphs, and obtain a graphical inequality as a result. One can
find more details in [18] and [19]. Thus, for a graph whose
second smallest eigenvalue is known, we can always compare
it with and obtain a set of coupling strengths to guar-
antee complete synchronization of the dynamical network (1).
To show how to implement this idea, we give an example now
on comparing graph with a star graph. Similar results can
be achieved when is compared with other typical graphs,
such as ring graphs, path graphs, and any graphs with known
second smallest eigenvalues.
Now consider an -vertex star graph , in which without

loss of generality we assume vertex 1 has neighbors. Then
. We consider two cases for all the edges

, , in .
1) Edge is not in the edge set of . Since is
connected, there must exist some paths in connecting
vertices 1 and . We choose arbitrarily one of those paths,
which is denoted by . Then we have

(8)

2) Edge is in . There are two options: one is to use
directly and the other is to choose arbitrarily another

path between vertices 1 and , if such a path exists. We set
the probability of the first option to be , and that for
the second where . If there are no paths
between 1 and other than the edge , we always set

. Thus we have

(9)

Note that (8) is the special case of (9) when is taken to be
1. Hence, we can use the inequality (9) with a proper choice of

for each , and so
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Fig. 1. Comparing with the star .

where the real valued function satisfies

if is the edge ,
otherwise.

Let

(10)

Then we have if the weight of the edge satis-
fies for . From Lemma 2 one has

if for all .
From Theorem 3, the synchronization manifold of the dynam-
ical system (1) is globally asymptotically stable, if
for . Thus we have proved the following theorem.
Theorem 5: Suppose that graph is undirected and

connected. Under Assumption 1, the synchronization manifold
of system (1) is globally asymptotically stable if the coupling
strength of edge satisfies for all
and for all , where is given by (10).
Remark 3: In the above two cases for the edge , one

can choose arbitrarily the path in the topological graph that
connects vertices 1 and . However, we prefer to choosing the
shortest path(s). To specify the choice of these shortest paths,
we set the rule as follows: for any two different vertices
and in the topological graph , we consider the set of all
the shortest paths connecting and , which is denoted by

with . We choose a path in the
set with equal probability . This rule is reasonable since
the shortest paths are one of the most critical characterizations
of connectivity between vertices in graphs and all the shortest
paths between the same pair of vertices are usually equally
important.
Remark 4: Compared with the graphical condition in The-

orem 4, the method in Theorem 5 greatly reduces the computa-
tional complexity. There are only paths that need to be con-
sidered in our algorithm, while one needs to check
paths to apply Theorem 4.
Remark 5: Similar results can be obtained when is com-

pared with other graphs, such as rings and paths. Theorem 4 (re-
spectively, Theorem 5) is the special case when graph is com-
pared with the complete graph (respectively, the star graph
). A proper choice of the graphs in comparison is helpful to

obtain less conservative lower bounds for coupling strengths
and reduce the computational complexity of the comparison at
the same time.
Now we use one simple example to demonstrate the

differences between the synchronization conditions in The-
orems 5 and 4. Consider an undirected graph , con-
sisting of five vertices and five edges

, which is shown on the left

Fig. 2. Comparing a fractal tree with the star .

of Fig. 1. Suppose that is compared with the star graph
on the right of Fig. 1. Comparing the two graphs, we use

the edge (1,2) in to represent the path connecting vertices
, (1,3) for , (1,4) for , and candidate paths

(1,3,5) and (1,4,5) for vertices . Then we have

Thus we have , , , ,
and . From Theorem 5, we obtain the bounds for the
edges in : , , , ,

.
In comparison, now we compare the two graphs and .

We use edge (1,2) in to represent the path connecting ver-
tices , edge (1,3) for vertices , edge (1,4) for ver-
tices , edge (3,5) for vertices , edge (4,5) for vertices

, and candidate paths (1,3,5) and (1,4,5) for vertices ,
path (2,1,3) for vertices , path (2,1,4) for vertices ,
paths (2,1,4,5) and (2,1,3,5) for vertices , paths (3,1,4) and
(3,5,4) for vertices . Then we have

Thus we have , , ,
, and . From Theorem 4, one of the

possible sets of bounds is as follows: ,
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Fig. 3. Ppaths in that pass through one of these edges (1,2), (2,5), (2,6).

, ,
, and .

From the above calculations, one can see that there are only 4
paths taken into consideration in according to the proposed
method in Theorem 5, while there are paths con-
sidered according to the method in Theorem 4. In addition, we
have obtained another set of bounds for the coupling strengths,
in which is smaller.

B. Benefits From Comparing With Stars

Now we give an example to demonstrate the advantages of
using the synchronization condition in Theorem 5. To simplify
our calculation, we consider a fractal tree with ten vertices,
shown on the left of Fig. 2. First, let the fractal graph be
compared with the star graph . Because of the fractal struc-
ture of graph , we only need to focus on the calculations of
bounds for the edges (1,2), (2,5), (2,6). And we have the com-
parison

Thus we have , , and . From
Theorem 5, we obtain the bounds for the edges (1,2), (2,5), (2,6)
in graph

(11)

Second, we give another set of bounds for the edges in using
the method in Theorem 4. We implement graph comparison be-
tween graph and the complete graph . Thus we need to
consider the paths in for every pair of vertices. The choice
of the path in for each pair of vertices is unique, because
there is no cycle in . We only need to calculate the bounds

for the edges (1,2), (2,5), (2,6). To do so, we first list all the pos-
sible paths that pass through at lease one of these edges, which
are shown in Fig. 3. Then, from in The-
orem 4, we have

Following the same reasoning, we have

and can be calculated similarly.
According to in Theorem 4, we obtain the

bounds for the coupling strengths of the edges (1,2), (2,5), and
(2,6) as

(12)

The above calculations show that the computational com-
plexity of graph comparisons is greatly reduced by using the
method in Theorem 5, comparing with what obtained using The-
orem 4. In addition, we have obtained another set of bounds for
coupling strengths of , in which each bound is much smaller.
The proposed method is especially effective when networks are
large and sparse.
Furthermore, the method we proposed can be applied to adap-

tively adjust the allocation of coupling strengths in order to
ensure the synchronization of a dynamical network when its
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Fig. 4. Compare the growing complete binary tree with the growing star.

topology changes with time. We explore in this direction in the
next subsection.

C. Applications in Networks With Continuing Growth

Now we apply Theorem 5 to allocate coupling strengths in
networks with continuing growth. It is much easier to compare
a growing graph with a growing star, with the same vertex set,
than with a growing complete graph. If one more vertex is added
to the star graph , only one more edge needs to be added.
However, if one more vertex is added to the complete graph
, new edges need to get involved in calculation. Moreover,

the second smallest eigenvalue of star graphs is the constant 1.
These motivate us to apply Theorem 5 on dynamic networks
with continuing growth.
In the following, we use complete binary trees to illustrate

the application. The complete binary tree with
vertices is the graph with the edges of the form and

for integer [18]. The complete binary tree
is shown on the left of Fig. 4.
Now we start with the complete binary tree with two layers
. Comparing it with the star , we have

From Theorem 5, it is easy to obtain the bounds for the edges in
: and .
Compare the complete binary tree with with

and for the complete binary tree with

In this subsection we use to denote the value of
for the edges between the th layer and the th layer in

the binary tree with , and to denote
the couplings between the th layer and the th layer in
. We obtain the weights for the edges in the complete binary

tree with by induction, and we postulate

(13)

for the edges of the form and with
where (the edges from the

th layer to the th layer).
Now we use induction to prove our conjecture. Suppose that

(13) holds for the complete binary tree with .
Then we calculate for the binary tree with

. The depth of is . The binary tree
has one more layer, and has more vertices which are la-

beled by . In order to assign couplings
in , we compare with the star graph , and cal-
culate for the edges of the form and with

and (the edges from
the th layer to the th layer):

This shows that (13) still holds for the binary tree with
layers, and hence by induction we have proved that (13) is

correct. Thus, for the binary tree with , the
weights for the edges of the form and for

where (the edges from the
th layer to the th layer) should satisfy

Now we state the result just proved as a proposition.
Proposition 1: Under Assumption 1, for the complete binary

tree with vertices, the global synchronization of
system (1) is guaranteed if the couplings between the th
layer and the th layer satisfy

V. APPLICATIONS TO SYNCHRONIZABILITY

In this section, we look at how to construct a lower bound for
when the weights of is fixed and given beforehand.

In this case, is referred to as the algebraic connectivity
[20] of and describes how well is connected; it has also
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been used to measure the synchronizability of a coupled dynam-
ical network [10]. However, it is usually not so easy to calculate

using local information and moreover, the existing al-
gorithms can be computationally costly to implement [25]. In
the following, we propose a way to construct a lower bound for

using the pairwise path information of , which is in-
spired by the graph comparisons done in Theorems 3, 4, and 5.

A. Measure Synchronizability of Unweighted Graphs

We first assume that is unweighted and time-invariant,
and construct a lower bound for using defined in
Theorem 4.
Theorem 6: a) Let denote , where

. It holds that

b) Let denote , where is defined by (10).
It holds that

Proof:
a) We compare the complete graph with the union of all
the possible paths in . In the proof of Theorem 4, we
have proven that

Since , one has

From Theorem 3, is equivalent to
.

b) We compare the star with the union of the paths
in . In the proof of Theorem 5, we

have shown that

where is defined by (10). Since ,
one has

From Theorem 3, one has
.

Remark 6: The constructions of a lower bound of in
[15] and [26] are similar to our estimation given by Theorem 6
a). However, we have taken a different approach, following a
simpler derivation.
Remark 7: Theorem 6 b) is obtained through comparing

graph with the star . Other lower bounds can be obtained
similarly if graph is compared with graphs whose second
smallest eigenvalues are known beforehand. A proper choice
of the compared graphs is helpful to obtain tighter lower

bounds for and reduce the computational complexity of
comparison. In general, Theorem 6 b) is more efficient than a)
especially when is sparse and large.
Now we give an example to show the effectiveness of the

estimations in Theorem 6. We consider the unweighted fractal
graph whose topology is shown on the left of Fig. 2. From the
calculations in Section IV-B, we have
and . Then the calculated lower

bounds for are 0.1538 and 0.2 according to Theorem 6 a)
and Theorem 6 b) respectively. The actual value of of this
graph is 0.2679. In comparison, one can obtain the lower bound

using Mohar’s lower bound [27]
where is the diameter of the graph.

B. Measure Synchronizability of Weighted Graphs

There have been differentmethods [28] to estimate the second
smallest eigenvalues of the Laplacian matrices of unweighted
graphs, but there is few result for weighted graphs. In this sub-
section, we measure the synchronizability of a weighted net-
work by expanding the result in the previous subsection.
Theorem 7: Let the weights of the edges of be

. Let

(14)

It holds that , where is the maximum
of all .

Proof: For each pair of where , we choose one
path in the weighted graph with two associated vertices .
Then from Lemma 3, we have

We compare the complete graph with the union of all pos-
sible paths in the weighted graph . Thus we have

From Theorem 3, is equivalent to

Thus we have arrived at the conclusion.
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Fig. 5. States of the coupled Lorenz oscillators (15).

Remark 8: Theorem 6 a) is a special case of Theorem 7,
which can be verified by setting
in (14). In this case one obtains from
(14). In addition, Theorem 7 is obtained through comparing the
weighted graph with the complete graph with the same vertex
set. Other lower bounds can be obtained similarly if is com-
pared with other fundamental graphs whose second smallest
eigenvalues are known beforehand.
Now we give an example to show how to use graph com-

parison to estimate lower bounds for synchronizability of
weighted graphs. We again consider the fractal graph
whose topology is shown on the left of Fig. 2, however all
the edges in the graph are weighted in this example. Suppose
the weights of the edges (1,2), (1,3), (1,4) are , and the
weights of the other edges are . To simplify the calculations
in graph comparison, we choose to compare the fractal graph

with the star , rather than with the complete graph
. In view of Lemma 3, we can compare edge (1,5) in

with the weighted edges (1,2), (2,5) in , and obtain that
. Similarly, we

have .
Because of the fractal structure of , we only need to focus

on the calculations for the edges (1,2), (2,5), (2,6) and thus
obtain

So we have
. Note that the Laplacian matrix of can be

written as
. Then one has

. Therefore
.

VI. NUMERICAL SIMULATION

In this section, we provide a numerical example to validate
Theorem 5. Given the self-dynamics and the inner cou-
pling matrix , we first need to figure out the value in As-
sumption 1. This has been extensively studied in the literature
on control and synchronization of chaotic dynamical systems
[29], [30]. For instance, two mutually coupled Chua’s circuits
can synchronize by choosing for a large
enough scalar [29, Cor. 10], where

are parameters of Chua’s circuits. As another ex-
ample, two Lorenz systems mutually coupled through the first
component of their states can synchronize when is greater than
a computable threshold [14, App. A]. In this simulation, we con-
sider the network (1) consisting of Lorenz systems coupled
through the first components of their states. To be specific, the
dynamics of the network are given by

(15)

and the inner coupling matrix is . According
to [14, App. A], the quantity

. We choose the fractal graph with vertices on
the left of Fig. 2 to be the network topology used in the sim-
ulation. The bounds for coupling strengths have been calcu-
lated and given by (11), and so we set the coupling strengths

, and the coupling strengths for
the other edges . The parameters in (15) are set to be ,

, . The initial states are randomly chosen from
[0,30]. The three subfigures in Fig. 5 show the state of the cou-
pled network (15) in its -dimension respectively. From
Fig. 5, one can see that the coupled Lorenz oscillators asymp-
totically synchronize by adopting the coupling strength allo-
cation (11) obtained according to Theorem 5. The simulation
results illustrate the correctness of the theoretical analysis in
Section IV-B.

VII. CONCLUSIONS

In this paper we have presented new ways to allocate cou-
pling strengths using spectral graph theory in order to achieve
synchronization in complex networks. Themain idea is to bound
the second-smallest eigenvalues of the Laplacian matrices asso-
ciated with the given networks by comparing the corresponding
network graphs to complete or other typical graphs with the
same vertex sets. The obtained results can simplify the com-
putation and be applied to growing networks.
Currently, we are looking into applying the proposed method-

ologies to networks with directed topologies, some preliminary
results have been presented in [31]. The main challenge is then
how to deal with the fact that the Laplacian matrices associated
with directed graphs are not guaranteed to be positive semidef-
inite anymore. We are also working on using the constructed
synchronization criteria to develop optimal or suboptimal solu-
tions for adding or deleting edges in a network to achieve better
synchronizability. It is of great interest to apply our results to
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practical engineered complex networks, such as the synchro-
nization of generators in electric power grids and data fusion
for signal processing in sensor networks.

APPENDIX

In this appendix, we show that Assumption 1 is equivalent to
Belykh et al.’s assumption on self-dynamics of oscillators
in [14]. The assumption in [14] requires

(16)

where is continuously differentiable.
Note that

. The following equation holds [14]:

Then we have

Therefore, in
Assumption 1 implies the inequality (16), provided that is
continuously differentiable.
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