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Delay-Induced Consensus and Quasi-Consensus in
Multi-Agent Dynamical Systems
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Abstract—This paper studies consensus and quasi-consensus in
multi-agent dynamical systems. A linear consensus protocol in the
second-order dynamics is designed where both the current and de-
layed position information is utilized. Time delay, in a common
perspective, can induce periodic oscillations or even chaos in dy-
namical systems. However, it is found in this paper that consensus
and quasi-consensus in a multi-agent system cannot be reached
without the delayed position information under the given protocol
while they can be achieved with a relatively small time delay by ap-
propriately choosing the coupling strengths. A necessary and suf-
ficient condition for reaching consensus in multi-agent dynamical
systems is established. It is shown that consensus and quasi-con-
sensus can be achieved if and only if the time delay is bounded by
some critical value which depends on the coupling strength and
the largest eigenvalue of the Laplacian matrix of the network. The
motivation for studying quasi-consensus is provided where the po-
tential relationship between the second-order multi-agent system
with delayed positive feedback and the first-order system with dis-
tributed-delay control input is discussed. Finally, simulation exam-
ples are given to illustrate the theoretical analysis.

Index Terms—Algebraic graph theory, delay-induced consensus,
multi-agent system, quasi-consensus.

I. INTRODUCTION

C OLLECTIVE behaviors in a group of autonomous mo-
bile agents, e.g., synchronization [2], [21], [27], [36], [37],

[41], [45], consensus [5]–[7], [15], [11], [12], [17], [19], [23],
[28], [29], [32], [33], [38], [39], [42], [44], [46], formation con-
trol motion [3], [8], [25], swarming, and flocking [24], have
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been widely investigated recently due to the interest in animal
group behaviors and broad applications in biological systems,
sensor networks [43],UAV (UnmannedAirVehicle) formations,
robotic teams, underwater vehicles, etc. The main idea is that
through a distributed protocol each agent shares information
onlywith its neighbors while thewhole network of agents simul-
taneously tries to coordinate with respect to certain global cri-
teria of common interest. As a typical collective behavior, con-
sensus usually refers to the problem of reaching an agreement
among a group of autonomous agents, which serves as a basic
foundation for the study of swarming andflocking behaviors.
Recently, many publications have been devoted to con-

structing conditions for reaching consensus among a group of
autonomous agents in a dynamically changing environment. In
[33], Vicsek et al. proposed a simple discrete-time model to
study a group of autonomous agents moving in the plane with
the same speed but different headings subject to noise perturba-
tion, which in essence is the velocity consensus problem based
on one of the heuristic rules proposed earlier by Reynolds
[30]. Based on algebraic graph theory [9], the linear Vicsek’s
model was studied in [17] and it was found that consensus
in a network with a switching topology can be reached if the
network is jointly connected frequently enough as the network
evolves with time. Afterwards, the study of consensus was
further extended to the case of directed networks [5], [23].
In the literature,most existingworks focusedon thecasewhere

agents are governed by first-order dynamics [5], [6], [17], [23],
[33].However,second-orderdynamics[11], [12], [28], [29], [32],
[38], [40], [44] have also received increasing attention due to
many real-world applicationswhere agents are governed by both
position and velocity dynamics. In [38], in particular, some nec-
essary and sufficient conditions for second-order consensus in
multi-agent dynamical systemswith directed topologieswere es-
tablished. It was found that both the real and imaginary parts of
the eigenvaluesof theLaplacianmatrixassociatedwith the corre-
spondingnetwork topologyplaykey roles in reaching consensus.
However, as shown in [11], [12], [28], thevelocity statesofagents
are often unavailable, therefore, some observers were designed
with some additional variables involved,which leads to the study
of higher-order dynamical systems.
It is well known that time delay, a destructive character in

dynamics, may result in oscillatory behaviors [34], network
instability (periodic oscillation and even chaos) [35], or the net-
work desynchronization with a general coupling function [10],
[16], [18]. On the other hand, consensus can be reached for any
finite time delay on the neighboring agents in [20]. However, in
[26], it was shown that time delay can induce system stability in
linear time-invariant systems, where both the stability regions
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(pockets) in the domain of time delay and the number of un-
stable characteristic roots at any given pocket were theoretically
analyzed. In [1], the delayed positive feedback was designed to
stabilize the systems with second-order oscillations. Different
from the results in [1], [26], quasi-consensus behavior is con-
sidered and the systems are coupled in this paper. In particular,
the motivation for studying quasi-consensus is revealed where
the potential relationship between the second-order multi-agent
system with delayed positive feedback and the first-order
system with distributed-delay control input is discussed. In
[6], consensus in first-order multi-agent systems with current
and outdated position states was discussed, showing that the
delay-involved algorithm converges faster than the standard
consensus protocol without time delays. In many real-world
applications, the relative velocities of neighboring agents are
difficult to be measured than relative positions [11], [12]. For
example, a camera can be used for relative position measure-
ments. In general, relative velocity measurements require more
expensive sensors. In some experimental work, each mobile
robot, equipped with range sensors, obtains the position infor-
mation of its own and its neighbors through some localization
algorithms. In the settings of such formation control problems
with range-only sensing, the velocity information is difficult
to be directly obtained. By using delayed position information
in the memory and without knowing the velocity information
of agents in second-order dynamics as in [11], [12], [29], it
is first found in this paper that consensus can be reached by
appropriately choosing network parameters while consensus
may not be achieved without time delay. This implies that,
similar to the delay-induced stability in linear time-invariant
systems [26], time delay can induce consensus in multi-agent
dynamical systems, which is the primary the motivation of the
present work.
It should be emphasized that there does not exist physical

communication delays in the network. This context essentially
explores the combination of the current relative position with
outdated relative position data (stored in memory) to help
achieve consensus. As a result there is no need to measure
relative velocities. In the designed system, the delays are not
the REAL communication delays existing in the network but
are outdated data stored in memory.
Note that a new consensus called quasi-consensus is defined

in this paper where the velocity states of agents asymptotically
converge to a common value but there are relative position
differences among agents depending on the initial conditions,
which is different from flocking [24] and formation control
[3], [8], [25] in multi-agent systems. In [3], a behavior-based
decentralized control for formation control architecture was
proposed. Formation stabilization of a group of autonomous
agents with linear dynamics was investigated by using struc-
tural potential functions in [25]. Then, a leader-follower
problem for maintaining a desired formation was considered in
[8]. For formation control and flocking in multi-agent systems,
a geometrically desirable formation has been designed in prior
while for quasi-consensus in this paper, the final position
configuration changes with different initial states.
The main contribution of this paper is that a distributed

protocol utilizing the current and delayed position information

in multi-agent systems with second-order dynamics is designed
which does not need the unavailable velocity information of
agents. Then, a new concept for quasi-consensus in multi-agent
systems under this setting is discussed. Some necessary and
sufficient conditions are derived for reaching consensus, and
it is found that consensus and quasi-consensus in multi-agent
systems with both current and delayed position information
can be reached if and only if the time delay is bounded by
some critical values which depend on the coupling strengths
and the largest eigenvalue of the Laplacian matrix of the
network. Furthermore, the motivation for studying quasi-con-
sensus is revealed where the potential relationship between the
second-order multi-agent system with delayed positive feed-
back and the first-order system with distributed-delay control
input is discussed.
The rest of the paper is organized as follows. In Section II,

some preliminaries on graph theory and model formulation
are given. The main results about delay-induced consensus
and quasi-consensus in multi-agent dynamical systems are
presented in Sections III. In Section IV, the motivation for
introducing the quasi-consensus in multi-agent systems is
discussed. Some numerical examples are given to illustrate the
theoretical analysis in Section V. Conclusions are finally drawn
in Section VI.

II. PRELIMINARIES

In this section, some basic concepts and results about alge-
braic graph theory and model formulation are introduced.
A weighted undirected network with order
consists of a set of nodes , a set of

undirected edges , and a weighted adjacency ma-
trix . An edge in a weighted undirected net-
work is denoted by the unordered pair of nodes , which
means that nodes and can exchange information with each
other. The weights are positive if and only if
there is an edge in . A path between nodes and
is a sequence of edges, , in the
network with distinct nodes . An undirected
network is connected if there is a path between any pair of
distinct nodes in .
For second-order dynamics, the consensus protocol in the lit-

erature is described by [28], [29], [38]

(1)

where and are the position and velocity
states of the th agent (node), respectively, and
are the coupling strengths, is the coupling

configuration matrix representing the topological structure of
the network and thus is the weighted adjacency matrix of the
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network, and the Laplacian matrix is defined
by

(2)

which ensures the diffusion property that . For
notational simplicity, is considered throughout the paper,
but all the results obtained can be easily generated to the case
with by using the Kronecker product operations [14].
Definition 1: Themulti-agent system is said to achieve quasi-

consensus if for any initial conditions,

where are constants. Particularly, if
, then the quasi-consensus is called consensus.

Since in (1), one only needs to
check if the final velocity states of all the agents are the same
for quasi-consensus. In [11], [12], [28], distributed observers
were designed for dynamics of multi-agent systems where the
velocity states were assumed to be unavailable, i.e., , and
some slack variables were introduced and a higher-order con-
troller was designed. In this paper, by using delayed position in-
formation, it will be shown that consensus and quasi-consensus
can be reached in the multi-agent systems. To do so, the fol-
lowing consensus protocol with both current and delayed posi-
tion information is considered

(3)

where is a time delay, and and are the coupling
strengths. Because of (2), this system can be equivalently
rewritten as follows:

(4)

Lemma 1: [13] The Laplacian matrix of an undirected net-
work is symmetric and positive semi-definite. Moreover, has
a simple eigenvalue 0 and all the other eigenvalues are positive
if and only if the undirected network is connected.
The following notations will be used throughout the paper for

simplicity. Let be the eigenvalues
of the Laplacian matrix be a
matrix with all entries being 1 (0), be
a vector with all entries being 1 (0),
be the norm of a complex number where

be the norm of a complex vector

, and and be the real and imaginary
parts of a complex number .

III. DELAY-INDUCED CONSENSUS AND QUASI-CONSENSUS IN
MULTI-AGENT DYNAMICAL SYSTEMS

Let , , and . Then,

network (4) can be rewritten as

(5)

Note that a solution of an isolated node satisfies

(6)

where is the state vector. Let
and rewrite system (5) into a matrix form:

(7)

where is the Kronecker product [14]. Let be the diagonal
form associatedwithmatrix , i.e., there exists an unitarymatrix
such that , where .

Then, one has

Let

, and . Then,
the above multi-agent system can be transformed to

(8)

(9)

Theorem 1: Suppose that the network is connected. Quasi-
consensus in the multi-agent system (3) can be reached if and
only if, in (8) or (9),

(10)

Proof: (Sufficiency). Since the network is connected,
is the unit eigenvector of the Laplacian matrix asso-

ciated with the simple zero eigenvalue , where
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and . Since for

and , one has

where .
(Necessity). If quasi-consensus in the multi-agent system (3)

can be reached, then there exists a value such that
. Since

, one has for
. Therefore,
, as for all .

Corollary 1: Suppose that the network is connected. Quasi-
consensus in the multi-agent system (3) can be reached if and
only if each of the following equations

(11)

has a simple zero root and the real parts of all the other roots are
negative.

Proof: It suffices to prove that

, if and only if each of the equations in (11) has a
simple zero root and the real parts of all the other roots are
negative. The characteristic equation of the multi-agent system
(9) is

(12)

(Sufficiency). If each of the equations in (11) has a simple
zero root and the real parts of all the other roots are negative,
then the states in (9) converge to some constants. Suppose that

. Then it follows that

, which is a contradiction.
(Necessity). From and , one

knows that , where are con-

stants. If each of the equations in (11) has at least one nonzero
root with nonnegative real part, then or cannot con-
verge; or if one of the equations in (11) has more than one zero
root, then one has or and . In both
cases, or cannot converge.
Corollary 2: Suppose that the network is connected. Con-

sensus in the multi-agent system (3) can be reached if and only
if, in (9) or (9),

or equivalently if and only if the real parts of all the roots in (11)
are negative.

Proof: The result can be proved through examining the
state following the same process as in the proofs of The-
orem 1 and Corollary 1.
Some necessary and sufficient conditions for reaching con-

sensus or quasi-consensus in the multi-agent system (3) have

been obtained in Corollaries 1 and 2 above. Next, we will show
that consensus and quasi-consensus in multi-agent system (3)
cannot be achieved when ; however, they can be reached
by appropriately choosing the time delay and the coupling
strengths and .
Lemma 2: Suppose that the network is connected. Con-

sensus and quasi-consensus in the multi-agent systems (3)
cannot be reached when . However, for a sufficiently
small and given fixed control gains and , consensus
(resp. quasi-consensus) can be reached if and only if
(resp. ).

Proof: From (11), one has when
. If , each of the (11) has two zero roots; if , there
exits at least one nonzero root with nonnegative real part. There-
fore, consensus and quasi-consensus in the multi-agent systems
(3) cannot be reached if .
From (11), one has .

If , then . Thus, it follows that
, which indicates that is bounded. If ,

the orders of and with regard to are different when
, and thus is bounded. For a sufficiently small , one

obtains

It follows that

(13)

By Lemma 1, one has . From (11), it is
easy to see that zero is a simple root if and only if
since when . If , then

or . Therefore,
quasi-consensus can be reached for a sufficiently small if
and only if .
From (13), one obtains

The real parts of all the roots in (11) are negative if and only if
where

for a sufficiently small .
Remark 1: It is easy to see from Lemma 2 that consensus

(resp. quasi-consensus) in the multi-agent systems (3) cannot
be reached without delay, i.e., , but interestingly they can
be reached even for a sufficiently small by choosing some
appropriate coupling strengths (resp. ).
It is well known that the time delay may result in oscillatory
behaviors or network instability (periodic oscillation and chaos)
[35]. However, as shown by Lemma 2 above, time delay here
can induce consensus in the multi-agent system (3). Moreover,
in order to reach consensus in the multi-agent system (3), the
coupling strength of the current states should be larger than that
of the outdated states, i.e., , at the nodes of the network.
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Lemma 3: Suppose that the network is connected. Each of
the equations in (11) has a purely imaginary root if and only if

(14)

or if and only if

(15)

Proof: Let . Without loss of generality, suppose that
. From (11), one has

(16)

Separating the real and imaginary parts of (16) yields

It follows that . If , then
. Since , one has when .
Lemma 4: [22], [31] Consider the exponential polynomial

where and
are constants. As are varied, the

sum of the orders of the zeros of on
the open right-half plane can change only if a zero appears on
or across the imaginary axis.
Lemma 5: Suppose that the network is connected. Let be

a solution in (11). Then,

(17)

Proof: Let
, and . Then,

from Lemma 4, one has . Since is con-
tinuous around the point and
are continuous, and is differentiable
with respect to around the point according to the
implicit function theorem.
Taking the derivative of with respect to in ,

one obtains

(18)

It follows that

where

.
Let

By simple calculations, one has

If , then and . Finally, one
gets

Theorem 2: Suppose that the network is connected.
1) Consensus can be reached in the multi-agent system (3) if
and only if

(19)

for all where .
2) Quasi-consensus can be reached in the multi-agent system
(3) if and only if

(20)

Proof:
1) The proof can be analyzed from Nyquist criterion by using
frequency domain approach. Equation (11) can be written
in a frequency domain form [1]:

(21)
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Note that if , the Nyquist plot always encircles the
point . Therefore, a necessary condition for the sta-
bility of (22) is that . Otherwise, there is at least
one clockwise encirclement in with Nyquist plot.
One only needs to consider the number of encirclements of

by Nyquist plot:

(22)

Consider all the intersections of the polar plot with the
negative real axis. Then, one has that there are no encir-
clements at of the Nyquist plot if and only if [1]:

(23)

where .
2) Since the network is connected and from Lemma 2,
one knows that quasi-consensus can be reached for a
sufficiently small if and only if .
Consider as a parameter varying from 0 to . By
Lemma 3, a purely imaginary root first emerges when

. In view of Lemmas 4 and 5,
(11) has a simple zero root and the real parts of all the
other roots are negative if
and , and there is at least one nonzero root with
nonnegative real part if . There-
fore, quasi-consensus can be reached in the multi-agent
system (3) if and only if
and .

For a fixed network topology, consensus can be reached in
the multi-agent system (3) if and only if is bounded by some
critical values by choosing appropriate coupling strengths

. On the other hand, when the time delay is fixed, an
interesting problem is how to design the coupling strengths such
that consensus can be reached. This issue is addressed by the
following result.
Corollary 3: Suppose that the network is connected.

Consensus (quasi-consensus) can be reached in the multi-agent
system (3) if

(24)

Remark 2: In themulti-agent system (3), the velocity states of
the agents are updated based on the current and delayed position
states of their neighboring agents. If the control gain is
very large, then from the conditions in Theorem 2 and Corollary
3, the allowable time delay should be very small such that the
delayed information can follow the states of neighboring agents
in real time. However, if the time delay is large, this delayed
position information may be outdated therefore cannot reflect
the real time states of neighboring agents. Thus, the larger the
coupling strength is, the smaller the time delay should
be.

IV. MOTIVATION FOR QUASI-CONSENSUS

In the above section, quasi-consensus in multi-agent system
(3) is introduced. In order to motivate the idea for defining
the new concept quasi-consensus in multi-agent systems with

second-order dynamics, it is very interesting to see that the
studied model is the exact first-order multi-agent system with
the control input involving the distributed delay. Actually, in
the multi-agent system (3), each agent needs some memory to
store the outdated information of its neighboring agents.
Next, a typical multi-agent system with memory of dis-

tributed delay is considered:

(25)

where is the state of agent is defined as above,
and is the coupling strength. If the initial condition for
(25) is well defined such that is differentiable, then one has

(26)

which is exactly system (3) or (4) with .
Corollary 4: Suppose that the network is connected. Quasi-

consensus can be reached in the multi-agent system (25) if and
only if

(27)

Proof: Choose and in (3). Then, the
result in (26) can be easily obtained by Theorem 2.
Remark 3: In the multi-agent system (25), only quasi-con-

sensus can be reached if the time delay is less than a critical
value , and it should be noted here that consensus
in (25) cannot be reached for any time delay and any cou-
pling strength . To satisfy the condition for reaching
consensus as in Theorem 2, a modified system of (25) is con-
sidered:

(28)

where is a weighting function. For example, one
can choose satisfying

[36].

V. SIMULATION EXAMPLES

In this section, some simulation examples are given to verify
the theoretical analysis.

A. Consensus and Quasi-Consensus in a Scale-Free Complex
Network

A scale-free network is generated in the simulation, where
the number of initial nodes is 5, and at each time step a new
node is introduced and connected to 5 existing nodes in the net-
work with degree preferential attachment, until the total number
of nodes [4]. By computation, one obtains

. Let and . From Theorem 2, one
knows that consensus can be reached in the multi-agent system
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Fig. 1. Position and velocity states of agents in a multi-agent dynamical system
with a scale-free network topology, where (a: left) and (b:
right).

Fig. 2. Position and velocity states of agents in a multi-agent dynamical system
with a scale-free network topology, where [(a): left] and
[(b): right].

(3) if and only if .
The position and velocity states of all the agents are shown in
Figs. 1 and 2, where consensus cannot be achieved when
[Fig. 1(a)] and [Fig. 2(b)] but it can be reached if

[Fig. 1(b)] and [Fig. 2(a)]. It is easy to
see that the numerical simulations well confirm the theoretical
analysis.
Actually, the real parts of all the roots in (11) are negative for

in this example. It
is quite easy to see that the convergence rate can be facilitated
by choosing an appropriate time delay . By simple calculation,
the time delay for reaching a fast convergence rate satisfies

, where .
Consider the multi-agent system with the same net-

work structure as above. Let and .
From Theorem 2, one knows that quasi-consensus can
be reached in the multi-agent system (3) if and only if

. The position and

Fig. 3. Position and velocity states of agents in a multi-agent dynamical system
with a scale-free network topology, where [(a): left] and
[(b): right].

Fig. 4. Position and velocity states of agents in a multi-agent dynamical system
with a random network topology, where [(a): left] and [(b):
right].

velocity states of all the agents are shown in Fig. 3, where
consensus cannot be achieved when [Fig. 3(b)] but
it can be reached if [Fig. 3(a)].

B. Consensus and Quasi-Consensus in a Random Network

A random network is also performed in the simulation, where
each pair of nodes is connected with the probability
and the total number of nodes . By simple calculation,
one obtains . Let and . From
Theorem 2, one knows that consensus can be reached in multi-
agent system (3) if and only if

. The position and velocity states of all the agents
are shown in Fig. 4. From Lemma 2, one knows that consensus
cannot be achieved when [Fig. 4(a)] while it can be
reached if [Fig. 4(b)], which indicates that a small
time delay can induce consensus in multi-agent system (3).
In order to verify the quasi-consensus in multi-agent

system (3), the same parameters and are
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Fig. 5. Position and velocity states of agents in a multi-agent dynamical system
with a random network topology, where [(a): left] and [(b):
right].

considered. From Theorem 2, one knows that quasi-con-
sensus can be reached in multi-agent system (3) if and only
if . The position
and velocity states of all the agents are shown in Fig. 5, where
consensus cannot be achieved when [Fig. 5(b)] but it
can be reached if [Fig. 5(a)].

VI. CONCLUSION

In this paper, a linear consensus protocol with second-order
dynamics has been designed based on both current and delayed
position information of agents. The time delay, usually a de-
structive character in dynamics, can induce periodic oscilla-
tions and even chaos in dynamical systems. However, it has
been found in this paper that consensus and quasi-consensus
in a multi-agent system cannot be reached without time delay
under the given protocol while they can be achieved with a
relatively small time delay by appropriately choosing the net-
work coupling strengths. A necessary and sufficient condition
for reaching consensus has been derived, which shows that con-
sensus and quasi-consensus can be achieved in a multi-agent
system if and only if the time delay is bounded by some crit-
ical values depending on the coupling strengths and the largest
eigenvalue of the Laplacian matrix in the network. The designed
consensus protocol with both current and delayed position infor-
mation is very useful especially when the velocity information
of the neighboring agents is unavailable. The allowable max-
imum communication delay for reaching consensus has been
theoretically analyzed, which is helpful for the design and im-
plementation of collective behaviors in multi-agent systems.
There are still many related interesting problems deserving

further investigations. For example, it is of interest to study
the multi-agent systems with nonuniform time delays and gen-
eral directed topologies, the critical time delays for reaching the
fastest convergence, and more general protocols with negative
weights in (28), which will be investigated in the future.
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