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Abstract—Wepropose distributed control laws for a group of anonymous
mobile agents to form desired circle formations when the agents move in
the one-dimensional space of a circle. The agents are modeled by kinematic
points. They share the common knowledge of the orientation of the circle,
but are oblivious and anonymous. Moreover, each agent can only sense the
relative positions of its neighboring two agents that are immediately in front
of or behind itself. Distributed control strategies are designed for the agents
using only the information of the relative positions of their two neighbors
and also the given desired distances to its neighboring two agents. To make
the control strategies more practical, we discuss the corresponding sam-
pled-data control laws, and utilizing the technique of adopting time-varying
gains, we obtain control laws that are able to guide the agents to form the
desired circle formation within any given finite time. One feature of the
proposed control laws is that they guarantee that the spatial ordering of
the agents are preserved throughout the system’s evolution, and thus no
collision may take place during the process of forming circle formations.
Both theoretical analysis and numerical simulations are given to show the
effectiveness of the proposed formation control strategies.

Index Terms—Circle formation, distributed control, finite-time conver-
gence, multi-agent system, order preservation, sampled-data control.

I. INTRODUCTION

Cooperativemobile robots have been utilizedmore andmore often to
carry out a growing variety of team tasks, such as environmental mon-
itoring [2], surveillance [3], exploration [4], pursuit and evasion [5],
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search and rescue [6], and transportation [7]. One active research topic
that arises in such robotic applications is the pattern-forming problem,
where autonomous mobile agents are required to generate and main-
tain cooperatively desired geometric patterns that are useful for var-
ious team tasks [8], [9]. In this line of research, significant efforts have
been made on the development of distributed strategies guiding agents
to form circle formations [10]; in particular, the focus is how to lead
the agents to distribute evenly on a given circle.
In theoretical computer science, the so called semi-synchronous

model developed in [10] has become popular and motivated quite a
number of following works [11]–[13]. It has been proposed that the
circle-forming problem can be decomposed into two independent sub-
problems: one is to guide the agents to move on a circle and the other
to arrange them in positions evenly distributed on the circle. Among
these works, it is usually assumed that the agents are i) oblivious,
namely without memories about past actions and observations, ii)
anonymous, namely not distinguishable from one another, iii) unable
to communicate directly, and iv) can only interact through sensing
other agents’ positions. Later on, the circle-forming problem has
been further studied in [14] in a complete asynchronous setting but
requiring that all the agents can only move on a circle.
Research efforts have also been made in the systems and control

community on the circle-forming problem [8]. For example, Marshall
et al. have studied distributed control laws under which agents gen-
erate circular pursuit patterns [15]. There are still open questions that
are motivated by the implementation of such control laws. For ex-
ample, people want to know whether desired formations can be ob-
tained in finite time instead of asymptotically; similar finite-time con-
vergence questions have been addressed for consensus-type algorithms
[16]–[18]. We have recently considered the scenario when agents are
under locomotion constraints [19].
The goal of this paper is to design distributed control laws that can

guide a group of autonomous mobile agents that move on a circle to
form any given circle formations. The spatial ordering of the agents
need to be preserved to avoid collisions between agents, which makes
the strategies more attractive when they are implemented in real robots.
To bemore specific, we consider a system consisting ofmultiplemobile
agents modeled by point masses, all of which move in the one-dimen-
sional space of a given circle. The agents are oblivious, anonymous,
and unable to communicate directly; they share the common notion of
being clockwise on the circle. Each agent can only sense the relative
angular positions of its neighboring two agents that are immediately in
front of or behind itself. Then the graph describing the neighbor rela-
tionships between the agents is always a ring [20]. After studying the
performances of the control law that we propose to solve the formulated
circle-forming problem, we further investigate its variation in the form
of a sampled-data control law to meet needs from practice. In the end,
motivated by our recent work [21] on finite-time convergence of con-
sensus algorithms through linear time-varying feedback, we look into
control laws that can guarantee that the agents form prescribed circle
formations within any given finite time.
The main contribution of the paper is threefold. First, we study the

circle-forming problemwithout the requirement that all the desired dis-
tances between neighboring agents are equal. Second, we take into
account two requirements from real robotic applications about using
sampled data and generating a formation within finite time. Third, we
have identified and studied the order preservation property that is par-
ticularly useful to prevent collisions between agents. The paper is or-
ganized as follows. In Section II, we formulate the circle formation
problem. Then we propose a distributed control law and analyze its
performances in Section III. In Section IV, a sampled-data control law
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Fig. 1. Agents distributed on a circle.

is studied and in Section V, control laws guaranteeing finite-time con-
vergence are designed for systems without or with sampled data. Sim-
ulations results are given in Section VI.

II. PROBLEM FORMULATION

We consider a group of , , agents that move on a given
circle. The agents are initially positioned on the circle already and no
two agents occupy the same position. The agents share the common
notion of being clockwise and for analysis purposes we label the agents
counterclockwise, as shown in Fig. 1, by . Also for analysis
purposes, we denote the positions of agent , , measured
by angles in a preselected coordinate system by and without loss of
generality assume that the agents’ initial positions satisfy

(1)

Each agent can only sense the relative positions of its immediately
neighboring two agents. Then the graph describing the neighbor rela-
tionships is an undirected ring , where
and . We denote agent ’s
two neighbors by and following the rule:

when
when

and

when
when

(2)

Each agent is described by a kinematic point

(3)

where is the control input. Let denote the prescribed angular dis-
tance between agents and . Then the desired circle formation is
determined completely by the vector

(4)

We say a desired circle formation is admissible if and
. We further introduce the variable that describes

the angular distance from agent to its immediate counterclockwise
neighboring agent. It can be obtained through local measurements,
such as the reading of sensors installed on agent . Since is defined
with respect to agent ’s local coordinate system, one can assume that
it always takes value from . Consequently, at time , it
holds that

when
when

(5)

Moreover, always holds.

Now we are ready to formulate the circle formation problem.
Definition 1 (Circle Formation Problem): Given an admissible

circle formation characterized by , design distributed control laws
, , such that under any initial

condition (1) the solution to system (3) converges to some equilibrium
point (dependent on ) satisfying . Moreover, the Circle
Formation Problem becomes a Uniform Circle Formation Problem
when where is the -dimensional all-one vector.
In robotic applications, it is usually desirable that a robotic team task

can be finished within finite time. This motivates us to formulate the
finite-time circle formation problem.
Definition 2 (Finite-Time Circle Formation Problem): Given any

finite time , design distributed control laws
, , , such that the Circle

Formation Problem is solved as .
Note that throughout the paper, we take the notation to mean

approaching from below.
Since the agents have been ordered counterclockwise on the circle,

if the agents’ ordering can be preserved throughout the system’s evolu-
tion, then no collision may take place between agents. We define what
we mean by preserving orders as follows.
Definition 3 (Order Preservation): For the -agent system under

consideration, we say the agents’ spatial ordering is preserved under
control laws if with initial condition (1), the solution to system
(3) satisfies throughout the system’s evolution.
In the next section, we discuss our circle-forming control laws using

the notion of way points.

III. WAY-POINT CONTROL LAW

In order to solve the Circle Formation Problem, it is natural to con-
sider the strategy to let each agent move towards its way-point that is
determined completely by its two neighbors’ relative positions and the
prescribed distances and

Obviously, if indeed , it must be true that the ratio of
over is exactly . Then the way-point based con-

trol law for agent becomes

which can be further written into

(6)

Substituting (6) into (3), we arrive at the the resulting closed-loop dy-
namics of the -agent system

(7)

which can be rewritten equivalently using ’s as

(8)
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...
...

...
...

...
...

(10)

We summarize the system dynamics into a compact form

(9)

where and is given by (10),
as shown at the top of the page.
Now we go ahead analyzing the convergence of the closed-loop

system (9). Towards this end, we first list some useful matrix analysis
results. For a positive integer , we use to denote the set of all
-by- real matrices. We say a matrix is nonnegative (resp. posi-
tive), denoted by (resp. ), if all its entries are nonnegative
(resp. positive). The directed graph of a matrix , denoted by

, is the directed graph with the vertex set , ,
such that there is a directed edge in from to if and only if

[22]. A directed graph is said to be strongly connected if there
is a directed path between any pair of distinct vertices [20].
Lemma 1 (Theorem 6.2.24 of [22]): For , the following

are equivalent:
i) is irreducible;
ii) is strongly connected.

A nonnegative matrix is said to be primitive if it is irreducible
and has only one eigenvalue of maximum modulus [22]. Then we have
the following results.
Lemma 2 (Theorem 8.5.2 of [22]): If is nonnegative, then
is primitive if and only if for some integer .
Lemma 3 (Lemma 8.5.5 of [22]): If is nonnegative and

irreducible, and if all the main diagonal entries of are positive, then
.

Lemma 4 (Lemma 8.5.6 of [22]): Let be nonnegative and
primitive. Then is nonnegative, irreducible, and primitive for all

.
Now we analyze the eigenvalues of , denoted by ,

that will be used later on.
Lemma 5: It holds that
i) is diagonalizable and , ;
ii) 0 is a single eigenvalue;
iii) When is even, 2 is an eigenvalue, while when is odd, 2 is

not.
Proof: Let denote the diagonal matrix

. Then one can check that the matrix
is a symmetric real matrix. Thus, is

diagonalizable and all its eigenvalues are real. One can further check
that all the ’s are located within the union

(11)

where

(12)

And all the ’s are also located within the union

(13)

where

(14)

Since , it must be true that
and . Thus,

. It follows then that , .
Consider the matrix . Its eigenvalues are

. Since , we have the spectral radius
, and one can check that 2 is an eigenvalue of .

Since is strongly connected, from Lemma 1, we know that
is irreducible. Furthermore, and all the main diagonal

entries of are positive. Then from Lemma 3 and Lemma 2,
is primitive, which implies that has only one eigenvalue

of maximum modulus. Said differently, the largest eigenvalue of
is single. Thus, in view of the relationship between and ,
we know that 0 is a single eigenvalue of .
Moreover, one can check that is also a symmetric

real matrix. For any , we have

(15)

One can then further check that there must exist a nonzero
such that for even , but there does not exist
such a for odd . It follows that 0 is an eigenvalue of for even
and is not for odd . Correspondingly, 2 is an eigenvalue of

for even and is not for odd .
In view of Lemma 5, without loss of generality, we now assume

throughout the rest of this paper.
Now we prove the main result in this section.
Theorem 1: Given any admissible circle formation characterized

by , the Circle Formation Problem is solved with order preservation
under the proposed control law (6).

Proof: Let , and then
. Let , and then we have

(16)

Since is the Laplacian matrix of which is strongly
connected, we have

(17)
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where is a constant. It follows then from the definition of that

(18)

Noticing and , it must be true that
and thus

(19)

In other words, the Circle Formation Problem is solved under the pro-
posed control law (6).
Furthermore, the solution to system (9) is

(20)

Consider

(21)
where . Since is nonnegative and primitive,
from Lemma 4, is nonnegative for all Further-
more, from Lemma 2, is positive. Thus,
is positive for . The initial condition (1) ensures that
because of the construction of . So under the initial condition, any
solution to system (9) satisfies for all . So the Circle
Formation Problem is solved with order preservation.
The following result is a special case of Theorem 1.
Corollary 1: The Uniform Circle Formation Problem is solved with

order preservation under the proposed control law that simplifies to

(22)

In the next sections, we consider practical issues arising when im-
plementing the proposed control laws.

IV. SAMPLED-DATA BASED WAY-POINT CONTROL LAW

In the previous section, a distributed control law (6) has been pro-
posed, which has been proven to solve the Circle Formation Problem
with order preservation. In real multi-robot systems, continuous-time
control laws may not be able to be implemented directly because of
hardware constraints related to communication bandwidth, rise time,
and computation load. Hence, sampled-data based control laws become
more practical in such cases [23]. In this section, we investigate the con-
vergence of the way-point control laws discussed earlier when sampled
data are used. The sampled-data based control laws are developed using
techniques of periodic sampling and zero-order hold.
Let be the sampling period, then we propose to use the fol-

lowing sampled-data way-point control laws

(23)

With the control law (23), the overall closed-loop system can be de-
scribed by

(24)

where

(25)

Necessary and sufficient conditions for the convergence of the
overall system are as follows.
Theorem 2: Consider the sampled-data control law (23), the Circle

Formation Problem is solved for all admissible circle formations char-
acterized by if and only if for even and
for odd . Furthermore, the corresponding closed-loop system has the
property of order preservation if and only if .

Proof: Let denote the th eigenvalue of corresponding
to of . Then we have , . From
Lemma 5, one can check that for all if
and only if for even and for odd . Using
similar arguments as those in the proof of Theorem 1, one can show
that

(26)

So we have proven the first statement of the theorem.
Now we prove the second statement of the theorem. For sufficiency,

one can check that when , all the entries of matrix
are nonnegative because . Moreover, no row of has

only zero entries. Since , the solution to system (24) satisfies
for all For necessity, we consider the case

when . Then one can construct a circle formation character-
ized by such a that . Now
check the first element in the vector

So there must exist a vector satisfying and
such that , which implies that the

order preservation property is violated.
We further consider the Uniform Circle Formation Problem.
Corollary 2: The Uniform Circle Formation Problem is solved with

order preservation under the sampled-data control law

(27)

if and only if for even and for odd .
The proof is similar to that of Theorem 2. To save space, here we

omit it.
In the next section, we consider another scenario that may arise in

real applications where the formations need to be generated within fi-
nite time.

V. FINITE-TIME CONTROL LAW

The control laws discussed in the previous two sections can only
guarantee that the circle formation will be formed as time goes to in-
finity. In some real applications, finite-time convergence is required. In
this section, we try to solve the Finite-time Circle Formation Problem
by using the technique of adopting time-varying gains.
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A. Control Without Sampled Data

Consider the following control law:

(28)

where is a time-varying feedback gain to be designed. The corre-
sponding overall closed-loop system becomes

(29)

From Lemma 5, we know that there exists a nonsingular matrix
such that

(30)

Let , and then we have

(31)

The main result of this subsection is as follows.
Theorem 3: Given any finite time , the time-varying feedback

control law (28) with

(32)

solves the Finite-time Circle Formation Problem with order preserva-
tion as time approaches , where is a positive constant.
To prove this theorem, we will need the following lemma.
Lemma 6: The control law (28) solves the Finite-time Circle Forma-

tion Problem as time approaches if as
.

Proof: Without loss of generality, we assume that the first column
of the matrix is . Then we have

Since and , it must be true that
.

Proof of Theorem 3: From (31), we have

(33)

which implies that

(34)

Since and are positive, it follows that

(35)

From Lemma 6, we know that the control law in the form of (28)
and (32) solves the Finite-time Circle Formation Problem as time ap-
proaches .
The solution of is

(36)

From Theorem 1, we know that . Since and
, it must be true that and thus
.

Remark 1: In the proof of Theorem 3, from (34) we have

(37)

If we pick the value of in such a way that , then is
bounded for all . It follows then that is bounded for all

. Said differently, if we pick a sufficiently large , the control
input in the form of (28) and (32) is bounded.
Next we expand Theorem 3 further to include more general forms

of control inputs.
Theorem 4: Given any finite time , the time-varying feedback

control law (28) with

(38)

solves the Finite-time Circle Formation Problem with order preserva-
tion as time approaches , if the signal satisfies for

and as . Furthermore, the corre-
sponding input is always bounded if is bounded for

.
Proof: The finite-time convergence and the boundedness of the

input follow directly from the fact that

(39)

To prove order preservation, we exam the solution of

(40)

Since , we have . Thus, similar to the
proof of Theorem 1, we have is positive,
which implies that for all .

B. Control With Sampled Data

The control law considered in this subsection has a similar form com-
pared with that in the previous subsection:

(41)
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where , and is a sequence
of time-varying feedback gains to be designed. The corresponding
overall system becomes

(42)

where

(43)

The main result of this subsection is as follows.
Theorem 5: The time-varying feedback control law (41) with

(44)

solves the Finite-time Circle Formation Problem when .
Proof: Let be the th eigenvalue of corresponding

to of , and then we have , .
From Lemma 5, there exists a nonsingular matrix such that
for all ,

(45)

Since , we have the elements in the th row
of are all zero. It follows that the matrix

Let , and then we have

(46)

Similar to the argument in the the proof of Theorem 3, we have
when .
Note that a bit different from standard distributed control, to calcu-

late the gains in (44), we have assumed that at the control-law design
stage one has the knowledge of of the overall formation, while to im-
plement such a control law each agent only needs to use the local in-
formation of the ’s. Also note that in this case, we have not been able
to provide a rigorous proof about order preservation, although one can
see from the simulation results in the next section that the ordering of
the agents are indeed preserved. While we have proved stability under
our proposed finite-time control law (41) (44) with the sampling pe-
riod , where is the given finite time, in practice, if

is large one can pick a smaller sampling period in order
to deal with possible measurement noises. In the next section, we use
simulations to show the effectiveness of the proposed control laws.

VI. SIMULATIONS

To verify the effectiveness of our proposed control laws in the pre-
vious three sections, we carry out numerical simulations in this section.
In Fig. 2, we show the simulation results of the way-point control laws
(6) and (23) without and with sampled data respectively. In Fig. 3, we
show the simulation results of the finite-time control laws (28) (32) and
(41) (44) without and with sampled data, respectively.
In all those simulations, the initial angular positions of the agents

are generated randomly satisfying the initial condition (1). The desired

Fig. 2. Simulation results of the proposed way-point control law for the Circle
Formation Problem when . (a)(b) the continuous-time case under con-
trol law (6); (c)(d) the sampled-data case under control law (23) with .
(a)(c) angular distance between each pair of neighboring agents; (b)(d) the dif-
ference between current angular distance and the desired one between each pair
of neighboring agents.

Fig. 3. Simulation results of the finite-time way-point control law for the Circle
Formation Problem for a preset time when . (a)(b) the contin-
uous-time case under control law (28) (32) with ; (c)(d) the sampled-data
case under control law (41) (44) with . (a)(c) angular distance between
each pair of neighboring agents; (b)(d) the difference between current angular
distance and the desired one between each pair of neighboring agents.

circle formation in the simulation of Circle Formation Problem is also
determined randomly. For ease of comparison, we use the same ini-
tial angular positions and desired admissible circle formation for each
case, where we present the angular distance between each pair of neigh-
boring agents, and the differences between current angular distances
and the desired ones between each pair of neighboring agents.
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The simulation results have shown that the groups of agents can
converge asymptotically (resp. converge at a preset time ) to the
desired circle formation under the way-point control law (resp. fi-
nite-time control law). In particular, the figures have demonstrated
clearly that the agents preserve their orderings under our proposed
control laws.

VII. CONCLUSION

In this paper, we have proposed distributed control laws for a
group of autonomous mobile agents to realize any given circle for-
mation. Control laws using sampled data and those guaranteeing
convergence in finite time have also been studied. We have paid
special attention to the property of order preservation, which can be
desirable in real applications. The results provide a simple yet ef-
fective method to solve the circle-forming problem, which comple-
ments existing results. From a practical point of view, our control
laws can incorporate sampled data and prevent collision between
agents. Because of the linearity of the form of the control laws,
they require less computation time and are thus more suitable to be
implemented in real robotic systems.
However, the circle formation problem that we considered in this

paper is under the assumption that the robots are initially positioned
on the prescribed circle already. Although we have borrowed the as-
sumption from the existing literature, this still leads to complementary
research questions about how to design control laws to lead agents to
move onto the circle when they move in the two-dimensional space of
a plane. We are also interested in using robotic testbed to test the de-
signed control strategies.
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