

Catalytic Processes for Gas Conversion

Dr. ir. Jingxiu Xie (JX)

Assistant Professor Rosalind Franklin Fellow Green Chemical Reaction Engineering research unit Engineering and Technology Institute Groningen University of Groningen

(New) catalytic processes for production at different scale

Large scale, integrated petrochemical complexes due to economy of scale

Exxon Mobil's largest integrated manufacturing complex located in Singapore

BASF's largest verbund site located in Ludwigshafen, Germany

2

Small scale, decentralized chemical plants closer to alternative feedstocks

Fulcrum bioFuels plant located in Nevada, USA Strategically located adjacent to waste landfill

Vision and Strategies

- 2. Waste stream processing/ upgrading
- Impure/ mix streams = requires
 purification/ separation = higher costs
- Depends on scale of operation

Research themes in my sub-group: dynamic and intensified catalytic processes

- 1. 'drop-in' synthetic fuels via Fischer-Tropsch Synthesis (FTS)
- 2. new catalysts and processes for CO_2/CO to chemicals
- 3. 'drop-in' synthetic fuels and chemicals via plastics hydrogenolysis together with Prof. Erik Heeres

Fischer-Tropsch Synthesis

4

Fischer-Tropsch Synthesis

Steam methane reforming: $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ $\Delta H = 206 \text{ kJ/mol}$

Fischer-Tropsch Synthesis: $n CO + (2n+1) H_2 \rightarrow C_n H_{2n+2} + n H_2 O$

ΔH = -165 kJ/mol

Reverse Water Gas Shift:

Fischer-Tropsch Synthesis:

Fischer-Tropsch Synthesis

 $\Delta H = 41 \text{ kJ/mol}$

ΔH = -165 kJ/mol

Flue Gas H_2 Tail Gas Recycle **Reverse Water** Fischer-Tropsch Product Gas Shift **Synthesis** Upgrading Synthesis CO₂ Raw Final Gas Products Products (CO₂, H₂O, CO, H₂) Off-gas for Fuel

n CO + (2n+1) $H_2 \rightarrow C_n H_{2n+2} + n H_2 O$

 $CO_2 + H_2 \rightleftharpoons CO + H_2O$

Reverse Water Gas Shift

Influence of CO₂ in FTS

220 °C, 21 bar, CO₂ FTS with $H_2/CO_2=3/1$, FTS $H_2/CO=2/1$ and CO/CO₂ FTS with $H_2/CO_2/CO=5/1/1$

Influence of H₂O in FTS

H₂O

9

J. Xie. Science. 2021, 371, 577

Influence of H₂O in FTS

220 °C, 21 bar, $H_{\gamma}/CO = 2$, CO conversion less than 10 %

CO₂-FTS

11

CO2-FTS

300 °C, 11 bar, H_2/CO_2 = 3, 600 - 72000 mL·g_{cat}⁻¹·h⁻¹

8.7 nm Fe

New catalysts and processes

Intensified CO₂ to Hydrocarbons

Methanol synthesis (R1)				Methanol conversion (MTO) (R2)		
CO ₂	⇒	CH₃OH	⇒	Dimethyl ether	4	Hydrocarbons

Advantages:

- Shift thermodynamic equilibrium (R1) = less recycling
- Fluidised bed to fixed-bed reactor (R2)
- Reduce separation and purification units
- Savings in energy and costs

Challenges:

- Process conditions
- Catalysts
- Hydrogenation of olefin products

Intensified Methanol to Olefins

J. Xie et al. ACS Catal. 2022, 12, 1520

Intensified CO₂ to Hydrocarbons

pubs.acs.org/CR

17

The Oxygenate-Mediated Conversion of CO_x to Hydrocarbons—On the Role of Zeolites in Tandem Catalysis

Jingxiu Xie and Unni Olsbye*

Cite This: https://doi.org/10.1021/acs.chemrev.3c00058

J. Xie, U. Olsbye. Chem. Rev. 2023, acs.chemrev.3c00058

Catalytic Processes for Gas Conversion

Acknowledgement

RUG:	Erik Heeres
	Bart de Jong
	Weixin Meng
	Loek Pieke
	Stefan Wubs
UiO:	Unni Olsbye
TU Delft:	Iulian Dugulan
Shell:	Leendert Bezemer