User’s guide to a distributed parallel solver for

sparse linear systems obtained from THCM using
METIS, MRILU and MPI

A. Meijster (a.meijster@re.rug.nl)
Center for High Performance Computing and Visualisation
University of Groningen
P.O. Box 11044
9700 CA Groningen

F.W. Wubs (wubs@math.rug.nl)
Institute for Mathematics and Computing Science
University of Groningen
P.O. Box 800
9700 AV Groningen

The user’s guide only treats the application of the MPI based version to
the Ocean Flow Model THCM. Since in essence we built a parallel shell around
MRILU we do not treat the user input for MRILU extensively here. At some
places in this document we refer to the technical description in the report “A
distributed parallel solver for sparse linear systems obtained from THCM using
METIS, MRILU and MPI”

1 Main routines

1.1 For the master processor
There are a few important routines to the user on the master processor:

FindOrdering constructs the permutation vector corresponding to the parti-
tioning. Since in THCM the structure of the matrix does not change, the
partitioning needs only to be done for one, i.e. the first, matrix. The rou-
tine also sends the array domain to the slave processors. The input to this
routine, which is part of the class CSRmatrix (file csr.cxx), is the matrix
generated by THCM, the number of planes in the vertical direction, the
position of the full row. The definition is
FindOrdering(int myrank, int nparts, int layers, int fullrow,

int *domain, int *blocksz, int *perm);
A short description of the input parameters:

myrank is the number of the processor running the master task. The value
of myrank is the number of processors minus one.

nparts is the number of processors claimed by the user.
layers is the number of vertical layers in the simulation.

fullrow is the position of the full row in the matrix.
Output parameters:

domain gives the start positions of the various domains including that of
the separators in the reordered matrix.

blocksz gives the sizes of the domains and the number of separators.

perm gives the permutation vector.

ReordFilterSend permutes the matrix, the right-hand side and the initial
guess using the permutation vector perm and distributes it over the pro-
cessors; it returns a full matrix corresponding to the separators on the
master. It is also part of the class CSRmatrix. The definition is
double **ReordFilterSend(int nparts, int *domain, int *blocksz,
int *perm, double *x, double *b);

There are only two parameters not explained before: the initial guess x
and the right-hand side b. Both are in- and output parameters. On output
they contain the whole reordered vectors.

MasterFactor Factors the Schur complement (file mastersolve.cxx). It also
makes a CSR matrix from the output of ReordFilterSend. The definition
is given by
void MasterFactor(int myrank, int nparts, int *domain, int nrows,
int nsep, double **Rfull, int *Ridx, int *ixLU, int *ixdiLU, int
xixDiag, int *ixPerm);
The new input parameters are below.

nrows is the order of the matrix.

nsep is the number of separators.

Rfull is the output of ReordFilterSend.

The output parameters are given below.

Ridx is the location of the descriptor of the CSR matrix corresponding to

Rfull in the MRILU workspace buffer.

ixLU is the location of the descriptor of the CSR matrix containing the
LDU factorization of the Schur complement.

ixdiLU gives the location of the array containing the positions of the
last non-zero off-diagonal element of matrix L in the CSR matrix
corresponding to ixLU.

ixDiag gives the location of the array containing the inverse of the diag-
onal of the LDU factorization.

ixPerm gives the location of the array containing the permutation array
of the factorization.

MasterSolve solves the linear system using FGMRES. The definition is
void MasterSolve(int myrank, int nparts, int *domain, int nrows,
int nsep, int Ridx, int ixLU, int ixdiLU, int ixDiag, int ixPerm,
double *x, double *b);
All parameters are already described before.

MasterFreePrec frees the memory for the preconditioner in the MRILU workspace
buffer. Its definition is:
void MasterFreePrec(int ixLU, int ixdiLU, int ixDiag, int ixPerm);
All parameters are already described before.

1.2 For the slaves

On the slaves there are a number of counterparts of the routines described for
the master.

BroadcastDomain receives the array domain from the master (send in FindOrdering).
Its definition is
void BroadcastDomain(int sender, int *domain)
The input parameter sender is the processor number of the master.

ReceiveMatVec receives those parts of the matrix, right-hand side and initial
guess from the master which have to be treated by the calling slave pro-
cessor. These matrices are send by the master routine ReordFilterSend
The definition is:
void ReceiveMatVec(int myrank, int masterrank, int nparts, int
*domain, int *Aidx, int *Eidx, int *Fidx, int *xIdx, int *rhsIdx);
The new input parameters:

myrank is the processor number of the slave.

masterrank is the processor number of the master (hence 0).
The output parameters:

Aidx is the location in the MRILU workspace buffer of the descriptor of
the CSR matrix corresponding to the A;; matrix to be treated on the
calling slave processor.

Eidx is the location of the descriptor of the CSR matrix corresponding to
the A;; matrix to be treated on the calling slave processor.

Fidx is the location of the descriptor of the CSR matrix corresponding to
the A;; matrix to be treated on the calling slave processor.

xIdx is the location of the initial guess (also the solution vector) in the
workspace buffer (only the relevant part for this processor).

rhsIdx is the location of the right-hand side in the workspace buffer (only
the relevant part for this processor).

SlaveFactor computes the factorization on the current slave for the matrix in-
dicated by Aidx. Furthermore it computes in a full matrix its contribution
to the Schur complement and sends it to the master (file: slavesolve.cxx).
Its definition is:
void SlaveFactor(int myrank, int masterrank, int nparts, int *domain,
int *Aidx, int Eidx, int Fidx, int *ixPrc);
The only new (output) parameter is ixPrc containing the location of the
descriptor for the MRILU incomplete factorization.

SlaveSolve runs FGMRES on the current slave processor. Its definitions is
void SlaveSolve(int myrank, int masterrank, int nparts, int *domain,
int Aidx, int Eidx, int Fidx, int ixPrc, int xIdx, int rhsIdx);
All parameters have been described above.

SlaveFreePrec frees the space in the workspace buffer occupied by the pre-
conditioner. Its definition is
void SlaveFreePrec(int ixPrc);

2 Parameter settings

All parameters are set in the file PARS.f. The parameters for MRILU, used in
the inner iteration, are as before. In this preliminary version, no exact elimina-
tion should be used within MRILU, since it is not anticipated enough for that
in the partitioning process. Furthermore, one should choose GlobFrac=1.0 in
order to force that MRILU starts directly with ILUT part.

For the ILUT factorization on the master and the solution with FGMRES
in the outer iteration, the parameters are set at the end of routine PARS and
they are communicated via common blocks in slvextr.inc. For FGMRES have
to be set only the maximum number of iterations MaxNItsF, the restart value
Mfgrmres, the reduction factor RedTolF and the absolute value AbsTolF for the
residual. The iteration is stopped if one of these last two values is satisfied.

Another important parameter is the size of the workspace buffer. This is set
in file wsb. common.

3 Overview of the code

The program is a mixture of C+4 and FORTRANT77. All MPI related routines
are in C++ using the C MPI library. Users should be aware that problems may
occur if also a FORTRAN MPI library is invoked.

Here an overview of the sources:

Makefile The compilation and linking can be done via make using the descrip-
tions in this file.

main.cxx is the routine from where the routine master (in master.cxx) and
slave (in slave.cxx) are called depending on the processor number.

master.cxx is the main example routine running on the master in which a
matrix is read in, a sample right-hand side is constructed, the partitioning
is formed, the factorization of the Schur complement is made, and the
system is solved.

mastersolve.cxx contains the routines for the call of the factorization and
FGMRES on the master.

fmastersolve.F contains the FORTRAN code used on the master processor,
i.e. the factorization of the Schur complement and the master part of
FGMRES.

slave.cxx is the main example program for the slaves in which the slave’s part
of the matrix is received and factored. Furthermore the slave’s solution
part is invoked here.

slavesolve.cxx contains the main routines for receiving, factoring and solving.

fslavesolve.F contains the FORTRAN part of the factorization and solution
process on the slaves.

csr.cxx contains all kinds of matrix operations including IO for matrices in
CSR format.

merge.cxx contains binary tree addition routines.

schurmerge.cxx contains send and receive routines for the contribution of the
slaves to the Schur complement, and computes the Schur complement.

communicate.cxx contains routines for the communication of vectors, CSR
matrices, etc.

wsbmalloc.cxx consists of routines that call MRILU FORTRAN routines that
allocate space in the MRILU workspace buffer for vectors, CSR matrices,
etc.

PARS.f contains the parameter settings for MRILU, ILUT and FGMRES.

wsb.common contains the common block for the MRILU workspace buffer.
Currently the magnitude must be set by hand.

wsreqgst.inc defines a few constants needed to use the MRILU workspace
buffer.

glbpars.inc contains a common block with a few global parameters of MRILU.

solpars.inc contains a common block with the parameters for the solution part
of MRILU.

slvextr.inc contains two common blocks with parameters for the MRILU rou-
tine incldu and the added FGMRES, respectively.

Of course many of the .cxx files are accompanied by a header file.

