A distributed parallel solver for sparse linear
systems obtained from THCM using METIS,
MRILU and MPI

A. Meijster (a.meijster@re.rug.nl)
Center for High Performance Computing and Visualisation
University of Groningen
P.O. Box 11044
9700 CA Groningen

F.W. Wubs (wubs@math.rug.nl)
Institute for Mathematics and Computing Science
University of Groningen
P.O. Box 800
9700 AV Groningen

This research has been supported by the Stichting Nationale Computerfa-
ciliteiten (National Computing Facilities Foundation, NCF)

Abstract

In this paper a parallel solver for sparse matrices obtained from THCM
(see [2]) using MRILU (library for solving sparse linear systems) is dis-
cussed. MRILU is a multi-level ILU factorization. Both the ordering and
dropping are determined by the magnitude of the elements in the ma-
trix. At each step of the elimination process a nearly independent set of
unknowns is sought and eliminated. Currently, the library is sequential.
In this paper we aim at parallelization for the class of distributed mem-
ory systems using a coarse grain approach. A nearly optimal distribution
of the matrix is computed using a library for graph partitioning called
METIS [3] . For communication between processes the MPI message
passing library is used.

1 Introduction

In this paper a parallel solver for sparse matrices obtained from THCM (see
[2]) using MRILU (library for solving sparse linear systems) [1] is discussed.
MRILU is a sequential library for solving sparse linear systems by means of
constructing Incomplete LU-factorizations (ILU factorizations). MRILU is an

abbreviation of Matrix Renumbering Incomplete LU-factorization. It is a multi-
level ILU factorization. Both the ordering and dropping are determined by the
magnitude of the elements in the matrix. At each step of the elimination process
a nearly independent set of unknowns is sought and eliminated.

From a previous attempt to parallelize the library (see [4]) for shared mem-
ory systems using fine-grain concurrency we concluded that this yields only a
modest speedup. We tried to implement basic parallel building blocks, like
matrix-vector and matrix-matrix multiplication for sparse matrices, and build
a version of MRILU on top of them. This approach has several drawbacks.
The implementation relied on the use of a large shared memory such that each
processor could access any coefficient of the matrix. This led to complicated
algorithms that heavily relied on synchronization primitives like mutexes and
semaphores. Standard problems like memory contention, cache coherency, and
cost of thread scheduling was the cause of only a modest speedup.

This time we aim at the class of distributed memory systems using a coarse
grain approach. For communication between processes the MPI message passing
library is used. Clearly, such an implementation allows to execute the program
on physically distributed architectures (like clusters) as well as shared memory
systems with an MPT interface.

The goal is to build a variant of nested dissection. Nested dissection leads to
effective orderings for direct methods. It is based on a recursive subdivision of
the domain using separators, leaving only isolated domains of elementary size
(one element in scalar equations). The ordering is now such that these domains
are eliminated first followed by the last added separators continuing with the
second-last added separators and so on until finally the separator dividing the
domain in two parts is eliminated. It is known that the work in this process is
dominated by the elimination of the last separators.

In the present method the domain is partitioned in subdomains using sepa-
rators,where each subdomain is treated by a separate processor. As with nested
dissection we eliminate the internal subdomains (using MRILU) creating con-
nections between all separators surrounding a domain. In a direct method one
would go on with the elimination of separators, however this will be quite costly.
Therefore we make an incomplete factorization (based on a drop tolerance) of
the associated matrix.

In the last step small elements in the matrix will be dropped. Obvious it
is a waste of effort to create such small elements and, fortunately, it is possible
to avoid that. It is clear that there are more small elements if the subdomains
are large, because often the strength of the connection between two unknowns
belonging to the separators surrounding a domain depends on their distance.
So small elements can be avoided by keeping the subdomains of moderate size.

Thus the original sequential code of MRILU is left as it is, and we have
build a parallel shell around it. The input matrix is a sparse matrix. Therefore
a compressed storage data structure, called CSR format, is used to avoid storing
unnecessary zeroes. The CSR format (Compressed Sparse Row) stores matrices
row-wise. The CSR data structure consists of a 4-tuple (nr, cf, col, beg), where
nr is an integer that represents the number of rows. The elements cf, col, and

a 0 b 0 O
c d e f O
A= ¢g 0 A 0 O

i 0 0 5 k

I 00 m n
nr || 5
beg || 1 |3 9 |12 15
cflla |0b d |e flg |h |1i J k|1 m | n
col || 1 3 1 2 3 4 1 3 1 4 5 1 4 5

Figure 1: A sparse matrix (top) and its CSR representation (bottom). The
entries of A are deliberately chosen to be symbolic, instead of actual numbers,
in order to avoid confusion between entries and indices.

beg are arrays. The array cf contains the non-zero entries of the matrix, stored
row-wise. These values are floating-point numbers (doubles). The array col is
of the same length as cf, and beg has length nr + 1. Both arrays are integer
valued. For entry cf(i), its corresponding column number is found in col (7).
Since entries of the same row are stored consecutively in cf, we only need to
know the index of the first entry of this row, and the index of the last entry.
The index of the first element of row 4 is stored in beg(i), while the index of its
last element is beg(i + 1) — 1. The array beg has length nr 4+ 1, since we need
to know the index of the last element of row nr. An example of the format is
given in Fig. 1.

As written above, we have decided to split the matrix in as many parts
as there are processors available. We chose to not use a static distribution,
but prefer to determine it during run-time instead. This has the advantage
that a nearly optimal distribution can be computed based on the content of
the matrix. To determine this distribution a graph-partitioning library, called
METIS (see [3]), has been used. Given some undirected graph G = (V, E),
METIS determines a partition of the vertex set V into sets V; (1 < i < n, where
n is the number of requested subsets). Let #A denote the number of elements of
the (countable) set A. METIS tries to find a nearly optimal solution satisfying
the following criteria :

o |#V; — #V;| is minimal, for all 7 # j.
o #(EN(U;x; Vi x V;)) is minimal.

In words, METIS tries to partition V in equally sized subsets V;, such that the
number of edges which have adjacent vertices in different subsets is minimal.
Finding the optimal solution is a NP-hard problem, and therefore cannot be
done in reasonable computation time. Therefore, METIS computes a (good)
approximation of the optimal solution. The solution is returned as an integer

array dom of size #V, where dom[i] = j denotes that unknown ¢ is contained
in subset V;. This array dom is usually called a coloring of V.

To compute a distribution using METIS, we first have to construct a graph
from the CSR representation of the matrix. This graph is constructed as follows.
Start with empty sets E and V. For each row ¢ insert ¢ in V', and for each non-
zero coeflicient of this row with column j (with i # j) insert the edges (i, j)
and (j,7) in E. METIS only handles symmetric graphs. Now, if we have n
(n > 2) processors at out disposal, we request METIS to split this graph in
n — 1 subdomains.

The reason for creating n — 1 subdomains, is that we are interested in a
number of special unknowns, called the interface unknowns. An unknown is an
interface unknown if it is adjacent to at least two subdomains. A separator is
an interface unknown x € V;, of which all its adjacent subdomains V; satisfy
i<j(i#i).

This way we split the unknowns in 'normal’ unknowns and separators. We
chose to implement a distribution strategy, based on standard Master-Slave com-
putations, where the separators remain at the master, while all other unknowns
are distributed to the slave processors.

In the next sections the actual implementation is described in some detail.

2 Structure of the program

The global structure of the program is as follows:

1. Construct an undirected graph from the matrix, and partition it using
METIS.

2. Determine the separators from the partitioning.

3. Reorder the unknowns and the right-hand side domain by domain and put
the separators at the end. Perform a corresponding symmetric reordering
of the matrix.

4. Distribute the matrix, unknowns and right-hand side over the processors;
the part corresponding to the separators resides at the master.

5. Make an ILU factorization of the matrices on the slaves using MRILU. Use
this to compute the slave’s contribution to the Schur complement matrix.

6. Subtract these contributions from the part of the matrix residing at the
master to form the actual Schur complement and make an ILU factoriza-
tion of that matrix using ILUT (thresholded ILU).

7. Enter a distributed FGMRES process.

(a) Compute the inner products of global vectors domain by domain,
add them together, and send them to all processors.

(b) Compute matrix vector products by using the distributed matrix.

(¢) Apply the preconditioner; this entails a distributed application of the
solve part of MRILU.

From this global structure it is clear that much can be done in parallel,
however the work on the master in steps 6 and 7c cannot be performed in
parallel with that on the slaves. In the next subsections, more details on some
of the less straightforward steps are given.

2.1 Partitioning, separators

In this subsection we focus explicitly on the matrices obtained from THCM.
These matrices stem from a 3D ocean circulation flow problem. In order to
minimize the number of separators we make use of properties of the problem.
We know that we deal with a 3D problem on a Cartesian grid with only a
limited number of unknowns in the vertical direction. Therefore, the basic idea
is to base the coloring on the surface layer only. From this the coloring of an
unknown at another layer is simply that of corresponding unknown on top of it
at the surface.
Therefore the partitioning is performed as follows.

1. Select the two submatrices corresponding to the two top layers. Consider
the unknowns that are on top of each other as the same unknown, so the
two submatrices correspond to two graphs for the same unknowns. The
union of these graphs is wanted which amounts simply by adding the two
matrices.

2. Eliminate all Dirichlet unknowns from the equations.

3. Reduce the resulting matrix by only considering the part corresponding to
the horizontal velocities 4 and v and the temperature 7. The coloring of
the other unknowns can be derived from these ones. In doing this we have
to account for the coupling of the velocities in the continuity equations.
Again the union can be taken with the corresponding momentum equation.
It turns out that this extra coupling can be found by simply multiplying
the matrix corresponding to the continuity equation with its transpose
(which is present in the matrix as the pressure gradient)

4. Symmetrize the resulting matrix and make an undirected graph from it
in order to be able to feed it to METIS.

5. Produce a coloring by METIS for u, v and T

6. Deduce the u, v and T separator from the coloring and give the unknowns
of the separator just a new color.

7. Give the salinity S the same color as T (they reside at the same grid point
in physical space).

8. Derive the coloring of the vertical velocity w and the pressure p from that
of u and v. We know that w and p are always internal to a domain and
never can occur as a separator we just give them the color of a neighbor
that is not part of the separator. Since w and p are on top of each other
physically they get the same color.

9. Color simply the unknowns at the other layers the same as those at the
top layer.

10. Since the pressure in each domain is determined up to a constant, one
pressure unknown is picked from each domain and given the color of the
separators.

11. The S unknown for which the equation is replaced by a salt conservation
law, resulting in a full row in the matrix, is also given the color of the
separators.

12. Built a permutation matrix from the thus found coloring.

The described process is performed on the master and has to be performed only
once per geometry.

2.2 ILU factorization

For simplicity we illustrate the factorization process using only 3 processors for
the following reordered matrix

A 0 Ags
A= 0 A22 A23 (1)
Aszp Az Az

Slave processors Processor i (i=1,2) obtains from the master A;;, A;3 and
Asz;. Next an incomplete factorization is made from A;; by MRILU. In order
to compute A31A;1Ai3 for every nonzero vector a in A;3 the system A;;a = a
is solved (using the solve part of MRILU) and multiplied by As;. In fact the
number of nonzero columns in A;3 and the number of nonzero columns in As;
is precisely the number of separators surrounding domain i. Hence, the nonzero
data of AgiA;ilAig can be stored in a full matrix the order of which is equal
to the number of surrounding separators. The processor sends this full matrix
including information on the original row and colum position to the master.
After the contributions are sent they can be deleted on the slaves.

In the factorization part of MRILU we can control the accuracy of the factor-
ization and by stopping criteria from the solve part one can control the accuracy
of the computed A31A;1Ai3.

The contributions to the Schur complement are collected and added via a
binary tree. Here processor 2 sends its result to processor 1 where it is added
and sent to the master. (For 5 processors, processors 2 and 4 send their result
to processors 1 and 3 respectively, where it is added to the part residing at that

processor and next processor 3 sends the result to processor 1 where it is added
to the result there and sent to the master (processor 5).)

Master processor The contributions from the slaves are subtracted from
Asz resulting in the Schur complement. Next an incomplete factorization of the
Schur complement is made using ILUT.

2.3 Matrix-vector product

Suppose one wants to compute y = Az and suppose the vectors z and y are
partitioned according to (1), hence & = (21,2, z3) and the vectors z; and x3
reside at processors 1 and 2 and x3 on the master; similarly for y. Hence, to
compute y;, for i = 1,2, x3 should be received from the master processor.

Since As; resides at the slaves we also compute As;x; there. The results
thereof are added via a binary tree and on the master added to Aszxs to give
y3. In this example, processor 2 sends its result to processor 1 where it is added
and sent to the master. (For 5 processors, processors 2 and 4 send their result
to processors 1 and 3 respectively, where it is added to the part residing at that
processor and next processor 3 sends the result to processor 1 where it is added
to the result there and sent to the master (processor 5).)

2.4 Application of the preconditioner

On the slave processor ¢ we solve A;;y; = b; by the solve part of MRILU and
premultiply y; by As;. The results of the respective processors are again added
in a tree and subtracted from bs. Once the new b3 is computed, the system with
the Schur complement matrix is solved using the ILUT factorization giving x3.
This result is sent to all slaves where it is premultiplied by A;3 and subtracted
from b; to give a new b;. Once again MRILU is used to solve A;;x; = b; giving
the result on processor i.

3 Numerical Experiments

In Tables 1 and 2 results of experiments of matrices of order 12228 and 49152
obtained from THCM are presented. From the latter also a plot is made in
Figure 2. The experiments were performed on the SGI ONYX-3400 machine
at RuG consisting of 16 processors (500 MHz MIPS R14000). This machine
is just a smaller variant of the TERAS, with exactly the same processors and
operating system.

In the first column the number of used processors is given. The number
of separators found by METIS are given in column SepSurf. According to the
discussion in Section 2.1 the number of separators for the full problem is ap-
proximately found by multiplying the SepSurf value by 4/3 times the number of
planes in the vertical direction, the latter being 8 for both matrices, so the num-
ber of separators of the full system is an order of magnitude more as those given

np | SepSurf Part BrTim SCreat SchFac FacTim SolTim It
(msec) (s) (s) (s) (s) (%)
4 73 18 0.08 137 3.7 141 2.7 5
6 111 20 0.11 25 8.3 34 0.72 8
8 149 21 0.14 8.4 11.3 20 0.82 11
10 181 35 0.21 6.5 15.5 22 0.78 12
12 202 23 0.22 3.9 17.8 22 099 14
14 224 26 0.27 3.0 18.1 21 092 14
16 235 26 0.28 2.4 19.5 22 0.97 15

Table 1: Timing results for matrix of order 12228

np | SepSurf Part BrTim SCreat SchFac FacTim SolTim It
(msec) (s) (s) (s) (s) (s)

8 310 92 1.0 1246 113 1359 46 16
10 382 94 1.1 470 148 617 23 18
12 430 96 1.3 194 162 357 11 19
14 487 97 1.4 114 173 288 12 26
15 485 108 1.5 76 159 235 11 26
16 512 97 1.5 63 185 248 9.6 26

Table 2: Timing results for matrix of order 49152

in this column. The partition time (column Part), consisting of the partition
by METIS and the extension of that to the whole problem is negligible in all
cases. Columns BrTim, SCreat, SchFac, Factim and SolTim contain the timings
for respectively the sends of the matrix parts to the slaves, the construction of
the Schur complement (which includes the factorization on the domains), the
factorization of that matrix, the total factorization time (the sum of SCreat and
SchFac) and the time needed to reduce the residual of the problem by 8 decimal
digits. Finally column It gives the number of FGMRES iterations to get the
desired reduction of the residual.

We have to deal with two effects in the construction phase. For a small num-
ber of domains the matrix per domain is large, resulting in a large factorization
time for that matrix and, due to an increase of the perimeter, more systems
to be solved for the contribution of this domain to the Schur complement ma-
trix. One observes that the time for this part, given in column SCreat decreases
rapidly if the number of domains (=np-1) increases. However if the number of
domains increases, the number of separators increases, making the last Schur
complement larger (also sparser) resulting in a longer factorization time (see
SchFac). In future improvements we have to deal with bringing down this fac-
torization time, by a further parallelization. For the time being we have to
balance the times of SCreat and SchFac, which limits the number of processors.

As written in the introduction an attractive method based on accurate factor-

1400 T
—— SCreat

—=— SchFac
—6- FacTim
1200 —— SolTim ||

1000

800

time (s)

600

400

200

N e
o ; " x "
8 9 10 11 12 13 14 15 16
np

Figure 2: Performance on matrix of order 49152

izations like the present one can be achieved only for a high number of domains
of not too large size since then much less elements are created in the Schur
complement that will be dropped during its incomplete factorization.

Comparing the two problems, the number of unknowns in the problem of
order 49152 is made 4 times more than that of order 12228 by doubling the
unknowns in the horizontal directions. This means that problems of about
equal size are solved on the subdomains if (np-1) on the finer grid is 4 times
larger than that of the coarser one. So for np=4 on the coarse grid we find 137
seconds for SCreat and we see that this value is between that of np=12 and 14
on the fine grid. Hence this part of the algorithm scales.

On the TERAS (using 1 processor) the standard MRILU takes about 300
seconds to factor the 49152 matrix and it takes about 30 seconds to gain 5 digits
using about 30 iterations. We see that the factorization time is of comparable
order and the solution time is significant longer, which means that the quality of
the standard MRILU preconditioner is slightly less than that of the parallelized
version.

The timing of the solution process (SolTim) contains both the times on the
slaves and that on the master. There is no doubt about it that also here for the
larger number of processors the solution time on the master dominates.

During the experiments we encountered a few memory complications. First,
the workspace buffer in MRILU is statically defined in COMMON (MRILU
is written in FORTRAN 77). This means that every processor has the same
workspace buffer. So if one processor needs a large workspace buffer all others
have the same large workspace buffer too. This could be avoided using dynamic
allocation which is available in Fortran 90 or C++. In fact the builders of MPI

assumed that one uses dynamic allocation.

A second problem with our workspace buffer is that space is claimed at both
ends of the underlying array in order to minimize the number of separate free
parts in the array. Now, if the array becomes too large for one processor then the
last end is stored on another processor which causes long waiting times for data
stored in the last end. For this reason we have observed that the performance
decreased with increasing size of the workspace buffer.

4 Conclusions

From this research one can draw the following conclusions.

1. It is hard to parallelize sparse linear equation solvers for sparse matrices,
specifically for matrices arising from THCM. The builders of PETSC for
example were not able to solve a system with the matrix of order 49152.
It is not simply adding some MPI directives but the whole process has to
be designed carefully.

2. The partitioning based on part of the equations at the surface appears to
be working fine, thereby reducing the size of the last Schur complement.

3. The parallelization is effective for the creation of the Schur complement.

4. Various parts of the algorithm call for an improvement, however, the most
challenging part is in creating a parallelization of the Schur complement.

5 Where to download

The code can be downloaded from the site: http://www.rug.nl/rc/hpcv/projects
There is also a document available which describes how to use the library.

References

[1] Botta, E., and Wubs, F. MRILU: An effective algebraic multi-level ilu-
preconditioner for sparse matrices. SIAM J. Matriz Anal. Appl. 4 (1999),
520-528.

[2] H.A. Dijkstra, H. Oksiizéglu, F. W., and Botta, E. A fully implicit model
of the three-dimensional thermohaline ocean circulation. J. Comput. Phys.
176 (2001), 685 T15.

[3] Kirk Schloegel, G. K., and Kumar, V. Graph partitioning for high perfor-
mance scientific simulations. Tech. rep., University of Minnesota, Minneapo-
lis, 2000.

10

[4] Meijster, A., and Wubs, F. Towards an implementation of a multilevel
ILU preconditioner on shared-memory computers. In HPCN Europe (2000),
pp. 109 118.

11

