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A B S T R A C T

Magnetic Skyrmions are non-coplanar nano-sized spin structures, sim-
ilar to tiny knots. First observed in 2009, they were found to have
highly unusual physical properties, which make them suitable for
spintronics applications. Being very small and highly mobile, Skyr-
mions can be used as building blocks of a new generation of low-
dissipation data processing and memory devices. The unusual dy-
namics of Skyrmions driven by electrical and thermal currents is di-
rectly related to their non-trivial topology and its understanding is
of fundamental importance. Theoretical descriptions of Skyrmions
that have been developed so far rely on continuous approximation
of the spin textures or on adiabatic conditions of the motion of spin-
polarized electrons in the non-coplanar magnetic system. The work
performed in our theoretical research is aimed at developing a dis-
crete theory of Skyrmion motion from microscopic models, consid-
ering also quantum effects, which become particularly important for
nanometre-sized Skyrmions. Numerical simulations of the dynamics
of single Skyrmions stabilized by frustrated exchange interactions on
a triangular lattice excited by an in-plane spin-polarized current were
also performed, showing evidence of the Skyrmion Hall Effect.
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1
I N T R O D U C T I O N

Skyrmions take their name from the British nuclear physicist T.H.R.
Skyrme [1], who introduced them in the early 60’s as a soliton solu-
tion of the non-linear sigma model to describe mesons and baryons
in a unified theory. In his original work, Skyrme considered three-
dimensional versions of Skyrmions, but later the definition was ex-
panded to account for more general theories. A Skyrmion is a smooth,
topologically stable field configuration which defines a non-trivial
surjective mapping from real space (or momentum space) to an order
parameter space with a non-trivial topology. Furthermore, a Skyrmion
is everywhere non-singular, finite and trivial at infinity, i. e. it has no
winding at infinity.

With the advent of Quantum chromodynamics, Skyrmions went
out of the focus of the scientific community for about twenty years.
It is in the seemingly unrelated field of Solid State Physics that they
made their reappearance in the late 80’s, when Bogdanov and Yablon-
skiy theoretically predicted the existence of spin structures similar
to Skyrmions in non-centrosymmetric magnetic materials [2]. In this
type of Skyrmions the order parameter is magnetization, while the
dimension is dictated by the physical dimensions of the considered
problem and materials.

Following these pioneering theoretical works, several experimen-
tal groups have recently found Skyrmions in magnetic materials (fer-
romagnets, multiferroics and ferrimagnets) using a variety of tech-
niques such as neutron scattering [3], Lorentz Transmission Electron
Microscopy (LTEM) [4] and spin-resolved Scanning Tunneling Micro-
scopy (srSTM) [5].

1.1 general properties of skyrmions

In the context of condensed matter physics, magnetic Skyrmions,
or simply Skyrmions, are particle-like nanometre-sized spin textures
with a non-trivial topology that guarantees their stability against per-
turbations. A single Skyrmion is shown in figure 1.1, where arrows
represent spins. Skyrmions are stable in the sense that they are topo-
logically protected: they are characterized by a topological integer
number that cannot be changed by a continuous deformation of the
spin configuration. The topological Skyrmion number (or topological
charge),

Q =
1

4π

∫∫
d2rn · (∂xn× ∂yn) , (1.1)

1



2 introduction

Figure 1.1: An isolated Skyrmion. The spin orientation is indicated by ar-
rows.

counts how many times the unit vector n (r) in the direction of mag-
netization wraps around a unit sphere [6, 7] (see also Appendix A.1).
For a single Skyrmion Q = ±1. In addition to the topological charge,
Skyrmions are characterized by chirality and helicity (see figure 1.2).
So far, only the Skyrmions with the chirality m = ±1 and helicity
γ = ±π/2 have been observed. The definition of m and γ can be
found in Appendix A.2).

Skyrmions appear in the ground state of several magnetic materials
in some interval of temperatures and magnetic fields. How extended
the region of Skyrmion phase is depends on the interactions stabi-
lizing these spin textures and on the dimensionality of the magnetic
material. Most Skyrmion phases in bulk materials only exist in a tiny
pocket of the phase diagram near the transition temperature. The
phase diagram of bulk MnSi with the region where Skyrmion crys-
tals are formed is shown in figure 1.3. Thin films, nanoribbons and
similar confined-geometry nano-structures, on the other hand, show
phase diagrams with wider Skyrmion phases extending to low tem-
peratures and low applied magnetic fields (see for example the phase
diagram of thin film Fe0.5Co0.5Si shown in figure 1.4).

Four mechanisms leading to the Skyrmion state have been identi-
fied so far:

1. Long range magnetic dipolar interactions;

2. Dzyaloshinskii–Moriya (DM) interactions;

3. Four-spin exchange interactions (and in general more exotic ex-
change interactions);

4. Frustated exchange interactions.
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Figure 1.2: Different Skyrmion structures with varying vorticity m and he-
licity γ. The arrows and colours represent in-plane spin direc-
tions, while the brightness indicates the component normal to
the plane (white = up, black = down).

Figure 1.3: a: Phase diagram of MnSi at ambient pressure as a function of
T and B [3]. Experimental points show boundaries between the
different phases. The A-phase, shown schematically in the panel
b, is characterized by a crystal of skyrmions.

a b

Figure 1.4: Observed phase diagram of Fe0.5Co0.5Si thin film in the B–T
plane [4]. The colour bars indicate the skyrmion density per
10−12m2. Dashed lines show the phase boundaries between the
skyrmion crystal (SkX), spiral (H) and FM phases.
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Long range magnetic dipolar interactions are crucial for the forma-
tion of magnetic bubbles, some of which have the topology of Skyrmi-
ons, in magnetic thin films with a perpendicular easy-axis anisotropy.
The dipolar interactions favour an in-plane magnetization thus com-
peting with the uniaxial anisotropy and resulting in a periodic stripe
domain spin structure where the regions of up and down magnetiza-
tion are separated by Bloch walls. An applied magnetic field results
in the formation of cylindrical domains (or magnetic bubbles) with
the topology of Skyrmions [8]. Since the magnetodipolar interactions
are relatively weak, the Skyrmions in thin magnetic films have typical
dimensions of 100–1000 nm.

Another mechanism for the formation of Skyrmions is the antisym-
metric Dzyaloshinskii–Moriya interaction

HDM = D12 ·S1 ×S2.

It originates from the relativistic spin-orbit coupling and is present in
many magnetic systems, often resulting in a small canting of spins
(e.g., weak ferromagnetism of antiferromagnets). The DM interaction
becomes particularly important in magnets whose crystal lattice lacks
inversion symmetry. In this case, terms linear in gradient of magneti-
zation, e. g.the Lifshitz invariant

L = D (n · ∇×n)

are allowed by symmetry in the phenomenological expression of the
free energy, resulting in a coherent rotation of the spins. Thus the
DM interaction in non-centrosymmetric magnets transforms a uni-
form magnetic state into a helical spiral. An applied magnetic field
favours a state with three coexisting spirals, which is the Skyrmion
Crystal (SkX) state. SkX phases in non-centrosymmetric magnets have
been experimentally observed in MnSi [3], Fe1−xCoxSi [9], FeGe [10]
and Mn1−xFexGe [11]. The size of Skyrmions stabilized by DM inter-
actions is in the range of 5− 100nm. As this size is inversely propor-
tional to the coupling constant D, materials with a higher value of
D host smaller Skyrmions. For example, Skyrmions formed in MnGe
have a radius of ∼ 3nm.

The four-spin exchange interaction occurs due to electron hopping
between four adjacent sites (ring exchange). Its coupling constant is
usually smaller than the Heisenberg exchange constant J and its con-
tribution to the energy is often ignored. Nevertheless, there are sys-
tems where the four-spin exchange interaction plays an important
role in the formation of complex magnetic structures. For example,
Heinze et al [5] investigated the formation of Skyrmions in hexagonal
Fe films of one-atomic-layer thickness on the Ir(111) surface. Here the
four-spin exchange interaction can compete with the exchange energy,
as the nearest-neighbour (nn) ferromagnetic (FM) exchange coupling
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Figure 1.5: a–d: Illustration of a spin spiral and Skyrmions of different rota-
tional senses and topological chargeQ. a : 90° spin spiral (Q = 0);
b: clockwise Skyrmion (Q = +1); c: antiSkyrmion (Q = −1); d:
anticlockwise Skyrmion (Q = +1). The size and sign of the four-
spin interaction term is indicated by black numbers for different
diamonds (shaded areas) consisting of four adjacent lattice sites
(ijkl). The in-plane projection of the Dzyaloshinskii–Moriya (DM)
vector D, which couples spins on adjacent sites, is also given by
red arrows for pairs of nearest neighbours. The value of the DM
term is indicated by red numbers. Adopted from ref. [5].

is unusually small for Fe/Ir(111) due to the strong Fe − Ir hybridiza-
tion. The four-spin interaction plays a crucial role in coupling differ-
ent spin spirals (1D) into two-dimensional magnetic structures, but
also DM interactions are important in such materials, as they lower
the energy of the Skyrmion (Q = +1) and antiSkyrmion (Q = −1) lat-
tices with respect to the multi-spiral state (see figure 1.5). Skyrmions
resulting from such interactions are very small. Their size is compa-
rable to the period of the underlying lattice.

Skyrmions have been theoretically predicted to form also in sys-
tems with competing Heisenberg exchange interactions, e.g. in trian-
gular ferromagnets with next-nearest-neighbour (nnn) antiferromag-
netic (AFM) interactions. The absence of inversion symmetry of the
crystal lattice is not required for this mechanism [12] Skyrmions in
such frustrated magnetic materials would be very small in size (∼lat-
tice constant) and present many degeneracies: in contrast to the case
of DM-stabilized Skyrmions, where the chirality and helicity are fixed
by the sign of D, here the formation of Skyrmions of any of the types
shown in figure 1.2 is possible. Unfortunately, to date, no frustrated
materials satisfying the right properties have been experimentally
synthesized, leaving the research opportunities to find new Skyrmion
materials wide open.
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We shall see how the magnetic ground state of a material is found
into deeper detail in the next chapter.

1.2 possible applications of skyrmions

The interest of the scientific community in Skyrmions is mostly driven
by the fact that Skyrmions are very promising information bits for
novel types of spintronic storage and logic devices [13]. Magnetic
bubble memories have been a topic of intense study in the 70’s and
are now used for niche applications. The research on manipulation of
Skyrmions is becoming very active, and a number of encouraging re-
sults is increasing the confidence of scientists that one day Skyrmions
will be implemented in devices useful to everyone. Today’s hard-disk
drives already achieve high densities of storage, but the increasing
complexity and fragility of their mechanical parts motivate the need
for solid state devices with comparable or even higher bit densities.
The prime example of such devices [14] is based on ferromagnetic do-
mains (spin up or spin down), separated by domain walls and located
on a magnetic nano-ribbon in a train fashion. The train of domain
walls can be moved electrically through the spin torque, thus making
it possible to read and write magnetic bits. However, there are some
problems with this technology. Namely, the critical current densities
necessary to depin domain walls are too high, resulting in too much
energy consumption and dissipation. Furthermore, the dimension of
the magnetic domains cannot be made smaller than about 50 nm, ren-
dering this approach still too far from the transition to a competitive
technology.

Skyrmions might help to solve most of these issues. Joniets et al
have demonstrated that the critical currents needed to move Skyrmi-
ons are about six orders of magnitude smaller than the ones needed to
move domain walls [15], suggesting that the Skyrmion-based devices
would have much lower power consumption. Moreover, Skyrmions
that can be as small as a few nanometres (and in principle, even com-
parable to interatomic spacing) can potentially provide an ultra-high
information-storage density.

Significant challenges still have to be met before Skyrmionic de-
vices can become a reality. All the studied Skyrmion systems, for ex-
ample, show a crystal of Skyrmions at low temperatures (up to 250K).
For memory applications though, we would need to be able to ma-
nipulate single Skyrmions at room temperature. To tackle this issue,
Fert, Cros and Sampaio have recently shown through micro-magnetic
simulations that layered structures of high-Tc materials and surface-
induced DM interactions can stabilize Skyrmions at room tempera-
ture [16]. A significant step forward for the realization of Skyrmion
writing/deleting processes was made at the University of Hamburg,
where PhD student Romming and co-workers were able to write and
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delete single Skyrmions with a spin-polarized STM tip on an ultra-
thin magnetic film [17].

Even lower energy consumptions could be achieved following a
parallel and modern all-spin approach, named magnonics. The scope
of this new research field (initialized in 2009 in Dresden1) is still un-
der debate, but the main concept is the one to manipulate information
bits with magnons instead of electrical currents. Energies involved in
the dynamics of all-spin systems are much lower with respect to the
conventional ones where electrical currents are used, therefore, mov-
ing the Skyrmions with magnons will be much more energetically
efficient. Recently, a collaboration between the University of Gronin-
gen and RIKEN (Japan) found that magnon currents can force Skyr-
mions to rotate in a Feynman’s ratchet-like fashion, suggesting that
magnons can indeed be used to control the motion of these spin tex-
tures [18].

1.3 skyrmion dynamics and new topological effects

The non-coplanar Skyrmion spin configuration brings about some
novel and intriguing physics, in particular, when we consider the
propagation of spin-polarized electrons through Skyrmions. Under-
standing electron-Skyrmion interactions is very important for the con-
trol of Skyrmions with electrical currents.

When a spin polarized electron propagates through the spin texture
of a Skyrmion, its wave function gains a Berry phase deriving from
the non-trivial Skyrmion topology. This phase happens to coincide
with the phase gained by the wave function of a charged particle
propagating in a magnetic field. Therefore, effectively the Skyrmion
acts on electrons as a flux φ of magnetic field. Moreover, this magnetic
flux is quantized:

φ = Qφ0,

where

φ0 =
hc

e

is the elementary magnetic flux.
The resulting effective gauge potential for electrons is

aµ =
1

2
(1− cosΘ)∂µΦ,

where Θ andΦ are the spherical angles describing the direction of the
local magnetization [19] and µ is the space-time index. The 4-vector

1 The first magnonics conference, entitled ’Magnonics: From Fundamentals to Appli-
cations’ was held in Dresden in August 2009, sponsored by the visitor programme
of the Max Planck Institute for the Physics of Complex Systems (MPIPKS).
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Figure 1.6: Artist-impression of a single electron moving through a
Skyrmion in the adiabatic approximation, in which the electron
spin aligns perfectly with the local magnetic moment. This inter-
action gives rise to the Berry phase gauge potential aµ. Adopted
from [20].

potential a = (a0,a) gives rise to internal electric and magnetic fields,
e and b: just like in the case of the electromagnetic vector potential
A,

b = ∇×a

and

e = −∇a0 − ∂0a.

It is important to notice that these effective fields are often very
strong. An estimate of the magnitude of b is

〈b〉 ∼ φ0

πR20
,

where R0 is the radius of the Skyrmion. Thus the smaller the Skyr-
mions, the larger the fields. For MnSi with R0 ∼ 18nm the effective
magnetic field is about 20T, while for MnGe with R0 ∼ 3nm it is
about 400T.

When electrons pass through a static Skyrmion (see figure 1.6),
their motion is affected by the magnetic field b. When the current
is higher than some critical pinning value, the Skyrmions gain a mo-
mentum from the electrons and generate an electric field e, which in
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Figure 1.7: Artist impression of topological phenomena related to Skyrmi-
ons. Adopted from [24].

turn also affects the motion of electrons. A deep understanding of this
coupled electron-Skyrmion dynamics is of fundamental importance
for the field, both from the applied and the theoretical points of view,
and most of the ongoing research today focuses on this issue.

Depending on the sign of the Skyrmion topological charge, elec-
trons passing through a Skyrmion are scattered to the left or to the
right, giving rise to a novel type of Hall effect, the Topological Hall
Effect (THE) (see figure 1.7). It was shown that the Hall resistivity ρxy
decreases with increasing velocity of the Skyrmions [21, 22]. Indeed
the velocity of moving Skyrmions can be measured exploiting such a
dependence. Another Hall effect resulting from the Gilbert damping
of Skyrmions, is the Skyrmion Hall Effect (SHE), i. e. the motion of
Skyrmions in the direction normal to the applied electrical current
[23]. The Topological magnon Hall effect (TmHE) has also been mea-
sured and theoretically modelled recently [18].

While the emerging electromagnetic fields from the electron-skyr-
mion interactions resemble the usual electromagnetic fields, the dy-
namics of Skyrmions is highly unusual. In particular, the Y coordinate
of the Skyrmion plays the role of momentum for the X coordinate,
and vice versa, i. e. there is a canonical conjugate relation between the
X and Y coordinates of the Skyrmion. Another unusual consequence
of the non-trivial Skyrmion topology, is the fact that the Skyrmion
velocity is perpendicular to the force applied to it. This results in the
gyroscopic motion of Skyrmions.

In Chapter 3 we shall describe how spin textures interact with elec-
trical currents, revising some of the most established models and
developing a discrete model for non-smooth spin textures. Most of
the problems treated in this thesis lead to non-solvable (differential)
equations, therefore numerical methods were extensively applied. In
chapter 4 such methods are discussed, along with the results obtained.
Finally, in the last chapter we draw our conclusions and suggest paths
to continue and improve this research.





2
G I N Z B U R G - L A N D A U T H E O RY, M E C H A N I S M S A N D
M AT E R I A L S

In this chapter we will discuss a theoretical method to find the equi-
librium magnetization ordering of a system given the symmetries of
a material and an applied magnetic field at a certain temperature. In
the first section we will revise a type of antisymmetric interaction
which is crucial in the formation of non-collinear magnetic orders.
In the following sections, the continuous theory of phase transitions
will be deepened and the phase diagram of MnSi will be modelled
through this theory. Finally, in the last section, we shall consider those
cases where a continuous model for magnetization is not applicable
and hence study some non-trivial microscopic models.

2.1 dzyaloshinskii–moriya interaction

The Dzyaloshinskii–Moriya interaction, also referred to as the Anti-
symmetric interaction, is a contribution to the total exchange interac-
tion between two neighbouring atoms with magnetic spin Si and Sj.
This interaction is entirely represented by a vector Dij (see Fig. 2.1)
and is proportional to the vector product of the two spins:

H
ij
DM = Dij ·Si ×Sj. (2.1)

It arises in molecules or crystals which lack inversion symmetry. Orig-
inally introduced with a phenomenological approach by Dzyaloshin-
skii [25] following symmetry arguments based on Landau Theory, it

Figure 2.1: Dzyaloshinskii–Moriya Dij vector representing the antisymmet-
ric interaction between spins Si and Sj deriving from spin-orbit
coupling and mediated by a single third ion (ligand) by the super-
exchange mechanism. Adopted from wikipedia.

11
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was derived microscopically by Moriya [26] by a pertubative treat-
ment of the spin-orbit coupling term. Its effect, in combination with
FM (AFM) Heisenberg exchange which produces parallel (anti-parallel)
alignment of spins, is to favour a coherent canting of the spins, intro-
ducing chirality in the magnetic configuration. This is what happens,
for example, in the ground state of helimagnets, such as MnSi.

The orientation of the vector Dij, which affects the modulation of
the spin texture, is dictated by the crystal structure. As an example,
referring to the figure, in the case when the exchange is mediated by
a ligand, Dij is proportional to the vector product of ri and rj:

Dij ∝ ri × rj = rij × x (2.2)

From this expression it is clear that Dij is perpendicular to the plane
determined by the three ions and vanishes when the three ions are in
line.

2.1.1 DM interaction and Lifshitz invariants

In the context of a Landau expansion of the free energy of a field of
spins with fixed magnitude S(r) = Sn(r), the DM interaction term
is represented by a combination of Lifshitz invariants. The crystallo-
graphic classes we are interested in are the ones which lack inversion
symmetry, that is, Cn, S4 and D2d. However, since the interactions
present in structures of the groups S4 and D2d are intrinsically ani-
sotropic, they are not important in our scope. If we consider the crys-
tallographic class Cn, the most general form of the Dzyaloshinskii–
Moriya interaction is

εDM
S2

= D1

(
nz
∂nx

∂x
−nx

∂nz

∂x
+nz

∂ny

∂y
−ny

∂nz

∂y

)
+D2

(
nz
∂nx

∂y
−nx

∂nz

∂y
−nz

∂ny

∂x
+ny

∂nz

∂x

)
+D3

(
nx
∂ny

∂z
−ny

∂nx

∂z

)
,

(2.3)

where Di are the components of the DM vector. Considering the sub-
groupDn (to which, i. e. MnSi belongs to) puts additional constraints
on these, namelyD1 = 0,

D2 = D3 = −D,
(2.4)

the invariant becoming

εDM = DS · ∇×S; (2.5)

while considering the subgroup Cnν, the only non-zero term is D1.
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2.2 ginzburg-landau theory and phase diagram of mnsi

The Ginzburg-Landau theory is a phenomenological theory for a
continuum description of phase transitions. It is named after V. L.
Ginzburg and L. D. Landau and can be applied to a wide range of
areas in physics. The central concept of this theory is based on the
existence of an order parameter that is non-zero in the ordered phase
below a critical temperature TC, and which becomes zero when in-
creasing the temperature above TC. Close to the phase transition the
order parameter is small, so that the appropriate energy functional
can be expanded as a power series in the order parameter. Minimiz-
ing this functional with respect to the order parameter yields the equi-
librium thermodynamics of the system. In the case of ferromagnetism
or smoothly varying magnetic textures the order parameter is the lo-
cal magnetization M(r). In thermal equilibrium, the magnetic state
of a system is the one that minimizes the free energy.

In this section we will focus our attention on finding magnetic or-
ders through minimizing the Ginzburg-Landau functional for a sim-
ple case (ferromagnets) and for the description of the phase diagram
of the itinerant helimagnet MnSi. This involves being able to find the
appropriate energy functional depending on the symmetries of the
system. The reason to study into such detail this material is that the
Skyrmion lattice in a magnetic material was first observed in 2009 by
Mühlbauer et al. [3] in such a crystal. They used neutron scattering
to observe the spontaneous formation of this novel type of magnetic
order. Other materials of the same B20 cubic structure family (or iso-
metric structure) show similar H–T characteristics.

2.2.1 Ferromagnets

The Ginzburg-Landau free energy functional for ferromagnets obeys
the following symmetries:

• Spatial translation;

• Spatial rotation;

• Spatial inversion;

• Transformation M −→ −M;

• Transformation B −→ −B;
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• If (B = 0): Combined rotation in space and spin space;

• If (B 6= 0): Combined rotation in space and spin space, around
the axis defined by B;

It can be written in its most general form as

E =

∫
d3r

[
αM2 + J(∇M)2 +UM4 −B ·M+ (higher orders)

]
(2.6)

where we have for simplicity adopted units in which the lattice con-
stant a = 1 (this assumption will always be made in the following,
unless differently specified). Note that here Mn means ‖M‖n =Mn

and (∇M)2 = ∂iMj∂iMj. The parameters in Eq. (2.6) derive from the
microscopic theory of the problem, e. g. (J > 0) represents Heisenberg
FM exchange and U > 0 mode-mode interaction to lowest order. The
parameter α as we will see, is crucial for determining in what kind of
phase the system is, and is temperature dependent: α(T) ∝ (T − TC).
In the case of zero magnetic field, the functional (2.6) is minimized
for homogeneous ferromagnetic configuration (∂iM = 0), and the
net magnetization if found when its variation is zero:

δE

δM
= 0 =⇒

2M(α+ 2UM2) = 0 =⇒M = 0

M = ±
√
− α
2U .

(2.7)

Therefore, when the temperature is below the critical temperature
(α < 0) the system has a neat, non-zero magnetization, while the
magnetization is zero (paramagnetic phase) for temperatures above
TC (α > 0).

2.2.2 MnSi: Helical (H), Conical (C) and Skyrmion (A) phases

Given the structural properties of MnSi (see Fig. 2.2 and Ref. [28])
and what we have discussed in the previous section, the free energy
functional for helimagnets takes on a different general expression.
In particular, the lack of inversion symmetry allows for additional
terms which have odd powers of spatial derivatives and thus are odd
under spatial inversion. The most important additional contribution
for helimagnets is the DM term

EDM =

∫
d3rDM · (∇×M). (2.8)

As we will see, the sign of D determines the chirality of the resulting
magnetic order (e. g. D > 0 =⇒ left-handed spiral), while the ratio
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Figure 2.2: The B20 crystal structure of MnSi, showing one unit cell.
Adopted from [27]

of the strength of the DM interaction coupling (that forces a canted
order) and ferromagnetic coupling (which instead prefers a parallel
order) fixes the wavelength (or, more generally, the length scale ξ) of
such magnetic structures.

helical and conical orders Consider the free energy func-
tional

E =

∫
d3r

[
J

2
(∇M)2 +DM · (∇×M) −B ·M

]
. (2.9)

As we can see in Fig. 1.3–a, below a certain critical temperature (TC ∼

29K), for zero magnetic field (or very low magnetic field) MnSi shows
an helical magnetic ordering. Let us for simplicity consider just the
case of zero field. It is reasonable then to ‘guess’ a solution of the type

M(r) ∝ ê1 cos(Q · r+ϕ) + ê2 sin(Q · r+ϕ), (2.10)

where ê1 and ê2 are two orthonormal vectors and Q is the wave
vector of the spiral. This expression can describe, with the proper
choice ofQ, a helical or cycloidal spiral and also a ferromagnetic state
(Q = 0). Plugging this solution into (2.9) the free energy becomes

E ∝
∫
d3r

[
J

2
Q2 −DQ · ê1 × ê2

]
, (2.11)

which is minimized for Q parallel to ê3 and

δE

δQ
= 0 =⇒

Q =
D

J
(in units of a−1).

(2.12)
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The inverse wavevector corresponds to the length scale on which the
magnetic structures develop:

ξ =
J

D
(in units of a). (2.13)

As expected ξ is determined by J and D. The weaker the DM interac-
tion with respect to the FM exchange, the smaller the wave vector Q,
that corresponds to longer modulations of the magnetization.

In Eq. (2.9) we have neglected some higher order terms that never-
theless are not crucial in the description of the conical and Skyrmion
phases:

• M4 and (M4
x +M

4
y +M

4
z) These terms determine the direction

of the magnetization vectors related to the direction of the cubic
crystal axes;

• (∂iMi)
2 These terms fix the direction of wave vector Q.

By gradually increasing the applied magnetic field, the component
of M parallel to B has a non-zero, increasing value in the conical
phase, untill the saturation is reached and the system becomes com-
pletely polarized.

skyrmion phase (a-phase) In a tiny pocket of the phase dia-
gram, for temperatures just below TC and finite magnetic field, a two-
dimensional hexagonal lattice of Skyrmions oriented perpendicular
to B is the ground state (see Fig. 1.3–b). The lattice constant of the
Skyrmion lattice is given by 2ξ/

√
3. The Skyrmion lattice decouples

very efficiently from the atomic crystal lattice, such that the plane
of the Skyrmion lattice orients perpendicular to B independently of
the underlying atomic orientation. This phase is also referred to as
“A-phase” for historical reasons, since this is the name it got when
the magnetization texture of this phase was not properly understood.
Before the discovery of the Skyrmion lattice it was believed that the
A-phase was just a single helix with a spiral wave vector Q aligned
perpendicular to the applied field.

To find such a minimal energy configuration, with the constraint
that in the whole lattice

M2 =M2
S (2.14)

we can use the method of Lagrange multipliers. Given the expression
of the free energy

E =

∫
d3r

[
αM2 + J(∇M)2 + 2DM · (∇×M) −B ·M

]
. (2.15)

we need to find a minimum of the functional

F = E−

∫
d3r λ(r)

(
M(r)2 −M2

S

)
. (2.16)
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By calculating δF
δM = 0 we get (let us omit the r dependence of M, B

and λ):

λM = −J∆M+ 2D∇×M−B. (2.17)

To find λ multiply (dot product) both sides of (2.17) by M and use
(2.14):

λ = −J
M ·∆M
M2
S

+ 2D
M · ∇×M

M2
S

−
B ·M
M2
S

. (2.18)

Plugging this expression of λ into Eq. (2.17) we obtain the equation
to solve to find the minimum of the free energy:

B+ 2D∇×M =

[
J

(
∆−

M ·∆M
M2
S

)
+ 2D

M · ∇×M
M2
S

+
B ·M
M2
S

]
M.

(2.19)

Unfortunately, equation (2.19) is not analitically solvable. One can
find good guesses to find local minima, or solve it numerically.

a simple solution A simple treatment to find the Skyrmion so-
lution based on reference [29] exploiting the radial symmetry of Skyr-
mions is the following. First, let us work with a continuous field of
fixed-magnitude spins n = Sn(r) (see also Appendix A) and further
simplify using units in which S = 1. Let us, moreover, consider the
case of a Skyrmion where the spins are parallel to the magnetic field
at the periphery, and anti-parallel at the centre. A better choice of
coordinates, given the symmetries, are polar coordinates

r = (x,y, z) = (ρ cosϕ, ρ sinϕ, z0),

where z0 defines the xy-plane where the Skyrmion lies (the magnetic
field is then in the z direction). In each point of space the spin can be
described by the two spherical angles

Θ(ρ,ϕ) the angle from the positive z-axis,

Φ(ρ,ϕ) the angle taken counterclockwise from the positive x-axis on
the xy-plane

by the vector

n (r) = ( sinΘ(ρ,ϕ) cosΦ(ρ,ϕ), sinΘ(ρ,ϕ) sinΦ(ρ,ϕ), cosΘ(ρ,ϕ) ) .

(2.20)

Since the Skyrmion is a radially symmetric structure, we have

Θ = Θ(ρ),

Φ = ϕ+
π

2
.

(2.21)
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Figure 2.3: Numerical solutions of Eq. (2.25) for different values of applied
magnetic fields (here the number associated with each line is the
ratio of B and the critical field BC) showing the magnetization
profile of a Skyrmion of size ξ. In the figure the x axis represents
ρ in units of ξ (denoted D0). Figure from [29]

Dependencies (2.21) are a particular choice among different types of
Skyrmions (cfr. Fig. 1.2). In these coordinates the free energy func-
tional is

E =

∫
ρdzdρdϕ

[
Dn · ∇×n+

J

2
(∇n)2 +B ·n

]
. (2.22)

Explicit calculation of terms in (2.22) using (2.20) and (2.21) gives

E =

∫
ρdzdρdϕ

[
J

2

(
Θ2ρ +

sin2Θ
ρ2

)
+D

(
Θρ +

sinΘ cosΘ
ρ

)
−B sinΘ

]
,

(2.23)

where subscript ρ denotes derivative w.r.t. ρ. From this expression
of the energy E =

∫
ρdzdρdϕε(Θ,Θρ, ρ) we can find the differential

equation governing Θρ in the Euler-Lagrange equation

∂ε

∂Θ
−
∂

∂ρ

∂ε

∂Θρ
= 0, (2.24)

and it is

J

(
Θρρ +

1

ρ
Θρ −

sinΘ cosΘ
ρ2

)
+ 2D

sin2Θ
ρ

−B sinΘ = 0 . (2.25)

Given the type of Skyrmion we are considering, the boundary condi-
tions to this differential equation areΘ(0) = π;

Θ(∞) = 0.
(2.26)

Eq. (2.25) was numerically solved in reference [29] and in Fig. 2.3
solutions Θ(ρ) are plotted for different values of the applied magnetic
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field. The function Θ(ρ) is also called magnetization profile of the
Skyrmion.

To conclude this section, it is important to mention that there are
other mechanisms that contribute to lowering the energy functional
and stabilize the Skyrmion phase that were not treated in this text.
It has been shown in ref. [3] for example, that upon including Gaus-
sian thermal fluctuations, the free energy of the Skyrmion phase be-
comes lower than the one of the conical phase, thereby favouring the
Skyrmion lattice phase. Moreover, Butenko et al. have studied aniso-
tropic terms in the free energy functional that could contribute to the
global thermodynamic stability of the Skyrmion phase [30].

2.3 microscopic models and competing interactions

We shall briefly discuss a microscopic model where helical ordering
is obtained without the need of antisymmetric interactions between
spins. The formations of spin spirals in such cases can be the result
of competing ferromagnetic and anti-ferromagnetic interactions. Situ-
ations like these occur in nature, for example, in materials where the
RKKY interaction is present, where the exchange constant between
two interacting spins depends on their mutual distance (both in mag-
nitude and sign).

Let us consider a simple case, which is a phenomenon that occurs
in some real materials (e. g. Dysprosium) in the family of rare heart
metals. These materials have a crystal structure such that the atoms
lie in layers. In the case of Dysprosium, there is a magnetic phase
in which the spins within the same layer align all parallel to each
other, but at an angle with respect to spins in the neighbouring layer,
say ϑ. For a simple argument, we only consider interactions between
spins of nearest and next-nearest neighbouring layers. The interaction
between two neighbouring layers (whose spins are at an angle ϑ be-
tween each other) can be described by the coupling constant J1 and
the interaction between two next-neighbouring layers (whose spins
are at an angle 2ϑ between each other) by J2. It is in all effects a 1D
problem. The energy of this magnetic system is

E = −J1
∑
nn

Si ·Sj − J2
∑
nnn

Si ·Sj, (2.27)

and if all the spins have the same magnitude S, and there are in total
N atoms, this expression can be simplified in

E = −NS2(J1 cos ϑ+ J2 cos 2ϑ). (2.28)

The energy is minimized for ∂E/∂ϑ = 0, that is

J1 sin ϑ+ 2J2 sin 2ϑ = J1 sin ϑ+ 4J2 sin ϑ cos ϑ = 0 =⇒

cosϑ = −
J1
4J2

.
(2.29)
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Figure 2.4: A triangular lattice. (Green) Red points are the (next-)nearest
neighbours coupled through JFM (JAFM) to the blue point.

This last solution is a helical magnetic order. It is favoured over a fer-
romagnetic (or anti-ferromagnetic) ordering for J1 > 00 (FM coupling,
JFM), J2 < 0 (AFM coupling, JAFM) and

|JAFM|

|JFM|
>
1

4
. (2.30)

A similar argument can be applied, at least theoretically, to the 2DThere are no
materials up to date

that are known to
host Skyrmions

stabilized by
competing
FM-AFM

interactions

problem where spins are displaced on a triangular lattice (see Fig. 2.4).
Considering nn and nnn interactions with coupling constants JFM and
JAFM, helical magnetism is possible if

|JAFM|

|JFM|
>
1

3
. (2.31)

In particular, a triple spiral state with the spirals wave vectors being
equal to each other in magnitude and rotated by 120° angles , corre-
sponding to a Skyrmion lattice, can be formed if

|JAFM|

|JFM|
=

1

1+ 2 cos
(
2π
ξ

) , (2.32)

where ξ is the lengthscale of such Skyrmions, and its range is dictated
by (2.31). Inverting (2.32) we obtain the Skyrmion dimensions in this
system:

ξ =
2π

arccos
(
JFM−JAFM
2JAFM

) . (2.33)
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S P I N T E X T U R E S M A N I P U L AT I O N B Y M E A N S O F
E L E C T R I C A L C U R R E N T S

In 2007 Peter Grünberg and Albert Fert were awarded the Nobel Prize
in Physics for their independent findings, dating back to 1988, of the
Giant Magneto-Resistance (GMR) effect [31, 32]. The ability to manip-
ulate electrical currents by means of magnetism opened the way for
an enormous step forward in data-storing applications. The oppo-
site mechanism, i. e. the control of magnetic structures using (spin
polarized) electrical currents, was proposed in 1996 by John Slon-
czewski and Luc Berger [33, 34]. This physical process is at the core
of Spintronics and promises to be, in principle, even of more impact
on applications, since in this way magnetic structures can be locally
modified through the interaction with conduction electrons. The base
mechanism is the spin-torque effect, which is the torque exerted by
the conduction electrons spins on the magnetic textures in the mate-
rial, causing it to move or change its state. The requirements for the
spin-torque to be non-zero is that the magnetic structure varies in
space and/or time. It has been extensively investigated, for example,
that a force can be applied by a spin-polarized current onto mag-
netic domains, causing them to move. This is because a spin torque
acts on the varying part of the magnetic configuration, i. e. the do-
main walls where spins are canted. Memory devices based on this
concept have been proposed [14], however researchers have shown
that current densities needed to start moving domain walls in real
materials (i. e. affected by impurities and pinning effects) are too
high (j ∼ 1011A/m2) to be appealing for competitive applications.
Skyrmion magnetic structures, on the other hand, have been shown
to couple very efficiently to spin-polarized electrical currents, thanks
to the fact that they vary continuously and ‘smoothly’ in space. The
threshold current densities needed to move them were measured (and
theoretically estimated) to be five order of magnitude lower than the
ones needed for domain walls motion.

In this chapter we shall start introducing a formalism to describe
the interaction of conduction electrons and spin textures which is a
direct consequence of the Berry phase accumulated by electrons in
the adiabatic aproximation [35]. We shall continue discussing some
of the measurable effects that are direct consequences of such inter-
actions. Finally we will revise the Landau-Lifshitz-Gilbert equation
and its most recent versions to describe the motions of spins in such
structures, and the Thiele formalism to study the motion of the spin
texture as a whole.

21
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3.1 motion of electrons through skyrmions in the adi-
abatic approximation

The adiabatic theorem, formulated in 1928 [36], states that a physi-
cal system remains in its instantaneous eigenstate if a given pertur-
bation is acting on it slowly enough. We can help ourselves under-
standing the concept of an adiabatic process with a simple classical
example: consider an oscillating pendulum attached to a moving sup-
port. If it moves fast (or at a comparable speed) with respect to the
frequency of oscillations, the motion of the pendulum will be deeply
affected, while if the support moves gradually and with a time-scale
much longer than the period of the pendulum, the motion of the
pendulum relative to its support remains unchanged, that is, the pro-
cess is adiabatic. Applied to our conduction electron moving in a
spin texture, this means that, in the adiabatic approximation, the ex-
change coupling J is much larger than the electron’s kinetic energy,
thus the conduction electron spin aligns to the local texture spin at a
time-scale much shorter then the one of its motion. This is verified if
the current density is low enough and if the Skyrmion size is much
larger than the Fermi wavelength of the conduction electron. In this
approximation, although its Hamiltonian is continuously changing,
the wave function describing the conduction electron only gains a
phase factor, called Berry phase. In the case of non-trivial spin tex-
tures like the Skyrmion, such a phase factor causes incredible (and
measurable) physical effects, due to the emerging of effective electro-
magnetic fields directly related to it. In the following we shall derive
such effective fields and describe some of their properties.

The motion of an electron is described by the Schrödinger equation:

ı h
∂Ψ

∂t
=

[
−

 h2

2m
∆− J(σ ·n)

]
Ψ, (3.1)

where Ψ and m are the electron’s spinor and mass, σ is the vector of
Pauli matrices, J is the Heisenberg exchange coupling constant and
n is the vector describing the spin texture (in units S = 1) of the
Skyrmion. Since we are in the adiabatic approximation, we can write
Ψ as the product of a spatial wave function and the texture spin vector:

Ψ = χ |n〉 . (3.2)

Substituting (3.2) in Eq. (3.1) we get

ı h
∂

∂t
(χ |n〉) =

[
−

 h2

2m
∆− J(σ ·n)

]
χ |n〉 , (3.3)

Multiply both sides of (3.3) by the bra 〈n|:

〈n| ı h ∂
∂t

(χ |n〉) = 〈n|
[
−

 h2

2m
∆− J

]
χ |n〉 , (3.4)
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where we have also used the fact that in the adiabatic approximation

J(σ ·n) |n〉 = J |n〉 . (3.5)

Performing all the derivatives we get

ı h
∂χ

∂t
=

[
−ı h 〈n|∂t |n〉− J−

 h2

2m
∆+ 〈n|∆ |n〉+ 2 〈n|∇ |n〉 · ∇

]
χ. (3.6)

In Appendix B we show, using Bloch spherical representation, the
following equalities:

〈n|∂t |n〉 =
ı

2
(1− cosΘ)Φ̇;

〈n|∇ |n〉 = ı

2
(1− cosΘ)∇Φ;

〈n|∆ |n〉 = (〈n|∇ |n〉)2 − 1
4
∂inj∂inj,

(3.7)

where Θ(r) and Φ(r) are the spherical angles describing the spin
tecture. Plugging (3.7) back into Eq. (3.6) we obtain

ı h
∂χ

∂t
=

[
 h

2
(1− cosΘ)Φ̇+

(  h
ı∇+

 h
2 (1− cosΘ)∇Φ

)2
2m

− J+
 h2

8m
∂inj∂inj

]
χ

(3.8)

which is equivalent to the Schrödinger equation of an electron in an
EM field if we define the effective 4-vector potential:

a0 =
ı h

e
〈n|∂t |n〉 = −

 h

2e
(1− cosΘ)Φ̇; (3.9)

a =
c h

ıe
〈n|∇ |n〉 = c h

2e
(1− cosΘ)∇Φ , (3.10)

where e is the electron charge and c the speed of light. The additional
term ∝ ∂inj∂inj is attributable to double exchange and it favours a
ferromagnetic spin ordering.

The general form of the Hamiltonian describing the motion of an
electron passing through a Skyrmion whose spins are described by n
and with an applied EM field described by Aµ is finally

H =

(  h
ı∇+ e

cα
)2

2m
− eα0 − Jeff , (3.11)

where αµ = Aµ + aµ is the total 4-vector potential and Jeff incorpo-
rates also the double exchange term.

3.2 emerging em fields and topological effects

The effective 4-vector potential results in effective electro-magnetic
fields felt by the conduction electrons even when there is no applied
external field:

h = ∇×a ; (3.12)

e = −
1

c
ȧ−∇a0 . (3.13)
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Actually, these fields are always much larger than the external ones
needed to stabilize the A-phase of Skyrmions. Furthermore, due to
the particular dependence that they have on the spin texture, they
have peculiar properties. We shall discuss them in the following.

Writing the effective magnetic field

hi = εijk∂jak

using the expression for ak in (3.10) leads

hi = εijk
 hc

2e
sinΘ∂jΘ∂kΦ . (3.14)

Exploiting the properties of the total anti-symmetric tensor (εijk =

−εikj, etc. . . ) we can write (3.14) like

hi =
1

2
εijk

 hc

2e
sinΘ(∂jΘ∂kΦ− ∂kΘ∂jΦ) . (3.15)

In Appendix B we show that sinΘ times the term in brackets in (3.15)
is equal to the mixed product (n,∂jn,∂kn) = n · ∂jn× ∂kn, thus for
example, for the z-component we have

hz =
 hc

2e
n · ∂xn× ∂yn

=
hc

e
ρQ

(3.16)

where ρQ is the Skyrmion topological charge density as defined by
the integrand of Eq. (1.1). A consequence of this is that the total flux
of the efective magnetic field of a Skyrmion is

φ =

∫
d2xhz =

hc

e
Q = Qφ0 = ±φ0 , (3.17)

i. e. proportional to the topological charge, which is for a Skyrmion
quantized and ±1 most often. Furthermore it can be shown that for a
moving Skyrmion with a drift velocity vd, the emergent magnetic and
electric fields are connected according to Faraday’s law of induction,
therefore the quantization of hi is also transferred to ei/vd [23].

3.2.1 Topological Hall Effect

A direct consequence of the emerging electro-magnetic fields is that
they contribute to the Hall resistivity in Hall measurements. Referring
to a classical experimental setup as in Fig. 3.1, when a magnetic field
is applied along the z-direction and and an electrical current flows
in the x-direction, due to the Lorentz force that the electrons feel, a
voltage is built in the y-direction. This voltage, the Hall voltage, can
be measured and its dependence versus the magnetic field studied.
The variable which is most often studied in experiments is the Hall
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Figure 3.1: Hall effect experimental setup.

resistivity ρxy, defined as the Hall voltage divided by the applied
electrical current. The subscript XY states the plane where the Hall
and applied voltages are measured. For non-magnetic materials the
Hall resistivity is linearly proportional to the applied magnetic field:

ρxy = R0HB , (3.18)

where R0H is the Hall coefficient. For ferromagnetic materials, the net
magnetization M increases the Hall resistivity proportionally to µ0M
in what is called the Anomalous Hall Effect:

ρxy = R0HB+ RAnH µ0M . (3.19)

Since the plane where the Skyrmion lattice (the A-phase) forms is
perpendicular to the applied magnetic fields, in a Hall effect experi-
ment the emerging magnetic field is parallel (or anti-parallel) to the
applied magnetic field, and its contribution to the Hall resistivity was
predicted to be [37, 38]

∆ρxy =
pR0H
2
hz , (3.20)

where p is the spin polarization of the current, which, e. g., for MnSi
is ∼ 0.1. Such a contribution was experimentally measured, ans was
actually the first proof of the existence of such twirled spin texture
phases [21]. Indeed, the emerging EM fields are not present in other
phases, not in the helical phase, nor in the conical, making the detec-
tion of non-zero ∆ρxy a discriminant for the existence of Skyrmions,
like shown in Fig. 3.2.

3.3 llg equation

We shall derive the equations of motion for the Skyrmion configura-
tion n(r, t), the Landau-Lifshitz-Gilbert (LLG) equation, via a varia-
tional principle.



26 spin textures manipulation by means of electrical currents

Figure 3.2: Plot of the Skyrmion phase contribution to Hall resistance from
the original work of Neubauer et al [21]. The top panel shows a
plot of the Hall resistivity near the critical temperature, for ap-
plied fields corresponding to the A-phase. In the bottom panel
the Skyrmion contribution to Hall resistivity is singled out, show-
ing it is non-zero only when Skyrmion ordering is present.
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In the adiabatic motion, with the electron wave function being ap-
proximated by (3.2), the electron action can be written

S =

∫
dtd3r

[
ı hχ†χ̇−H

]
, (3.21)

where the first term in the integrand is the Berry phase term for the
spin action and the second term, the hamiltonian density, is the sum
of the emerging fields hamiltonian H0 of Eq. (3.11), the interaction
hamiltonian

Hi = ρa0 −
1

c
j ·a (3.22)

and the DM Hamiltonian

HDM = Dn · (∇×n) , (3.23)

where ρ and j are the electron density and current. The Berry phase
term in Eq. (3.21) can be written

B =
1

v
(cosΘ− 1)Φ̇ , (3.24)

where v is the unit cell volume. If we express the electron density
ρ = −ex/v as the charge of the electron times the average number of
electrons per site divided by the volume of the unit cell, we see that
the term ρa0 is proportional to the Berry phase term and the two can
be summed in the spin action:

ρa0 =
−ex

v

(
− h

2e

)
(1− cosΘ)Φ̇ = −

x h

2v
(1− cosΘ)Φ̇ . (3.25)

We can thus re-write the spin action like

S =

∫
dtd3r

{
γ(cosΘ− 1)Φ̇+

 h

2e
j · [(1− cosΘ)∇Φ] −H ′

}
, (3.26)

where we have defined γ ≡  h(S+ x/2)/v and H ′ = H0+HDM, which
from now on we will simply denote as H. We note that the spin action
does not trivially relate to the vector n, since we only see the spherical
angles defining n in this expression. Nevertheless, we shall find that
the variation of the action relates in a nice way to the spin texture. Let
us proceed in computing the variation of the action:

δS =

∫
dtd3r

{
γ
[
− sinΘδΘΦ̇+ (cosΘ− 1)δΦ̇

]
+

 h

2e
j · [sinΘδΘ∇Φ+ (1− cosΘ)δ(∇Φ)] −

δH

δn
δn

}
,

(3.27)

integrating by parts the second and fourth terms we get

δS =

∫
dtd3r

{
γ sinΘ

(
−δΘΦ̇+ Θ̇δΦ

)
+

 h

2e
sinΘj · (δΘ∇Φ−∇ΘδΦ) −

δH

δn
δn

}
.

(3.28)
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It is easy to show (cfr. Appendix B) that

sinΘ
(
−δΘΦ̇+ Θ̇δΦ

)
= n× ṅ · δn

and

sinΘj · (δΘ∇Φ−∇ΘδΦ) = n× (∇ · j)n · δn

thus, by requiring δS/δn = 0 we get the equations of motion for n:

n×
[
γṅ+

 h

2e
(j · ∇)n

]
=
δH

δn
. (3.29)

We can further simplify this by multiplying (cross product) both sides
of Eq. (3.29) and using A×B×C = B(A ·C) −C(A ·B) and the fact
that n is a constant magnitude (=1) vector, therefore n · ∂µn = 0.
Finally we obtain the Landau-Lifshitz equation:

ṅ = γn×
(
−
δH

δn

)
+

 hγ

2e
(j · ∇)n . (3.30)

By defining the effective field Heff = −δHδn and with the appropriate
scaling of units, it can be rewritten:

ṅ = n×Heff + (j · ∇)n . (3.31)

The term of Eq. (3.31) proportional to the current is called adiabatic
spin-transfer torque.

The equation we have just derived is only valid in the total absence
of damping and in a perfectly adiabatic process. For this equation
to describe the minimal energy configuration in the totally polarized
phase, we need to add a damping term, also called Gilbert damping
(hence the name Gilbert-Landau-Lifshitz equation), which is defined
by a positive constant α and is proportional to the cross product of the
spin texture vector with its time derivative. This is because this damp-
ing torque should be always orthogonal to n, since n is a vector of
constant magnitude. Beside this damping term, a new non-adiabatic
spin-transfer torque was introduced to account for small dissipative
forces that break the conservation of spin in the spin transfer process.
It is based on electron-spin relaxation phenomena and its coupling
constant is usually β. The most general form of the LLG equation is
then:

ṅ = n×Heff + (j · ∇)n+αn× ∂tn−βn× (j · ∇)n . (3.32)

This equation is widely and successfully used to solve spin dynam-
ics in spintronics and related fields. We shall see, in the next section,
how it simplifies if we assume a rigid drift of the spin texture as a
whole:

n(r, t) = n(r−R(t)) , (3.33)
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where R(t) describes the Center of Mass (CM) motion. This method,
know as the Thiele method [39], will also allow us to calculate the
forces acting on Skyrmions and estimate the drift veloticy vd in terms
of the applied current and the LLG-equation parameters.

3.4 thiele method and skyrmion equations of motion

We start from the ansatz (3.33), justified by the phenomenological ob-
servation that after a current is applied, the non-collinear spin texture
translates as a whole. We have then

ṅ = −(Ṙ · ∇)n (3.34)

Assuming a rigid motion of the spin texture prevents this formalism
to account for pinning forces, which have to be added in the future if
needed for the case of study. Plugging (3.33) and (3.34) into the LLG

equation we get:

−(Ṙ · ∇)n = (j · ∇)n−n× δH
δn

+α
[
(Ṙ · ∇)n× ṅ

]
−βn× (Ṙ · ∇)n .

(3.35)

The idea of this method is to project the equation of motion onto
the translational mode, which is the symmetry spontaneously broken
when the Skyrmion lattice forms, on the plane perpendicular to the
external magnetic field (the plane where Skyrmions lie). To do so , let
us multiply equation (3.35) to the left by (n×). Simplifying the multi-
ple cross products, and using j = −vs (velocity of the spin polarized
conduction electrons) in our scaled units, we get

(vsi − Ṙi)n× ∂in = −

(
ni
δH

δni

)
n+

δH

δn
− (βvsi −αṘi)∂in . (3.36)

Multiply this (dot product) by ∂jn:

δH

δn
∂jn = (vsi − Ṙi)(n,∂in,∂jn) + (βvsi −αṘi)∂in∂jn . (3.37)

Integrating Eq. (3.37) over a Skyrmion unit cell, we see that the LHS
term becomes (minus) the derivative of the total energy of the Skyr-
mion with respect to the Skyrmion coordinates (−∂E/∂Rj) since ∂jn =

−∂n/∂Rj. This is the force felt by the Skyrmion. Hence the two terms
on the RHS can be analysed as the two direct effects of the spin-
polarized current on the Skyrmion: the first term was defined by
Thiele as the Gyromagnetic vector, since it transforms the spin current
in a magnus force perpendicular to it. This term is clearly connected
to the topological charge, in fact it is non-zero only for the A-phase;
the second term is a dissipative term (dissipative tensor) and it de-
scribes drag forces. This final outcome, known as the Thiele equation,
can be written as

F = G× (vs − Ṙ) + Γ(βvs −αṘ) , (3.38)



30 spin textures manipulation by means of electrical currents

where G and Γ are given by

Gi = εijk

∫
UC

d2r(n,∂in,∂jn) , (3.39)

Γij =

∫
UC

d2r∂in∂jn . (3.40)

Note that F vanishes (to lowest order in spin-orbit coupling) for a
perfect Skyrmion lattice due to translational invariance. Further, if we
consider an external magnetic field parallel to the z-direction and an
in-plane excitation current, exploiting the symmetries of the system,
the dissipation tensor has the following simple form

Γ = Γ

 1 0 0

0 −1 0

0 0 0

 (3.41)

and the gyrocoupling vector is just G = 4πQẑ. Recasting the Thiele
equation with these approximations we get a linear system of equa-
tions

4πQ

 0 −1 0

1 0 0

0 0 0

 (vs− Ṙ)+ Γ

 1 0 0

0 1 0

0 0 0

 (βvs−αṘ) = 0 . (3.42)

which is effectively two-dimensional (x and y components). Rear-
ranging terms in (3.42) we obtain the equations of motion for the
Skyrmion CM:[

αΓ −4πQ

4πQ αΓ

]
Ṙ =

[
βΓ −4πQ

4πQ βΓ

]
vs . (3.43)

This system is always non-singular, and its solution is

Ṙ = VSk =
β

α
vs +

α−β

α3
(
Γ
4πQ

)2
+α

(
vs +α

Γ

4πQ
ẑ× vs

)
. (3.44)

VSk is the drift velocity of the Skyrmions due to the spin-polarized
current vs. It can be seen from its expression that, although it is the
sum of ‘drag’ term and a ‘magnus’ term, this latter is much smaller
or even zero since α ∼ β. Therefore the Skyrmion lattice is expected
to translate almost parallel to the excitation current, at a small angle

θ ≈ (α−β)
Γ

4πQ
. (3.45)

The LLG equation and Thiele method are mostly applied for DM-
stabilized skyrmions, since in this case the length scale of magnetic
ordering is large enough to justify a continuous approximation of
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the treatment. Such skyrmions typically have a radius of hundreds
of lattice sizes, making the angles in between neighbouring spins in-
deed ‘infinitesimal’. What happens then when the size of Skyrmions
reduces to fifty, twenty, or even less than ten lattice constants? We
have seen in the introduction and in Section 2.3 that, e. g. frustrated
interactions can result in such nano-structures. Here the continuous
treatment we just discussed clearly breaks down, or at least has some
significant discrepancies. In the next chapter we shall cover this is-
sue and attempt to find equations of motion for the Skyrmion in a
microscopic model. Morover, the motion of quantum Skyrmions sta-
bilized by frustrated exchange interactions on a triangular lattice will
be studied through numerical simulations based on finite differences
and the LLG equation.





4
Q U A N T U M - S K Y R M I O N S : A N A LY T I C A L A N D
N U M E R I C A L A P P R O A C H

In the previous chapters of this thesis we have revised the state of the
art of the theory regarding Skyrmions and motion of spin textures in
general. Most of these theories, though, rely on the assumption that
the structure described by spins vary smoothly in space and time,
so one can use linear functions, differential operators and most im-
portantly the adiabatic approximation, to describe energy function-
als and equations of motion. These theories have explained (and pre-
dicted) extraordinarily well a vast range of experimental phenomena
in their validity domains. When dealing with really nano-sized Skyr-
mions, on the other hand, we do need to develop a fully microscopic
theory to describe their physics. In this chapter we shall discuss a
model based on the Ferromagnetic Kondo Double Exchange. In this
context we shall derive the equations of motion for the spin texture.
We shall see that they do not reduce as nicely as in the continuum the-
ory. As an approximation, we studied numerically the stability and
motion of frustrated quantum skyrmion on a triangular lattice, with a
method which is an ‘hybrid’ in between the discrete and continuous
models, which includes non-adiabatic effects. In the last section we
shall show the results obtained from these simulations.

4.1 equations of motion of a single spin

Before going to the actual problem, let us review a simple, solv-
able case of the motion of a single spin. It is useful for we are go-
ing to attempt to simplify the actual e.o.m’s with the same proce-
dure. Consider the spin S = Sn = S(sinΘ cosΦ, sinΘ sinΦ, cosΘ)
parametrized by the two spherical angles Θ and Φ and described by
the Hamiltonian H. The action is

A =

∫
dt
[
 hS cosΘΦ̇−H(Θ,Φ)

]
. (4.1)

Calculating variations of the action we find the eqations of motion:δAδΘ = 0 =⇒ − hS sinΘΦ̇− δH
δΘ = 0 ,

δA
δΦ = 0 =⇒ + hS sinΘΘ̇− δH

δΦ = 0 .
(4.2)

33
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An orthonormal basis for spherical coordinated is the set of vectors

ê1 = (cosΘ cosΦ, cosΘ sinΦ,− sinΘ) =
∂n

∂Θ
;

ê2 = (− sinΦ, cosΦ, 0) =
1

sinΘ
∂n

∂Φ
;

ê3 = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) = n .

(4.3)

Multiplying Eq. (4.2)(I) by ê1 and (4.2)(II) by ê2/ sinΘ and summing
the two equations we get

 hS(− sinΘΦ̇ê1 + Θ̇ê2) =
δH

δΘ
ê1 +

1

sinΘ
δH

δΦ
ê2 =

δH

δn
, (4.4)

where the last equality follows from (4.3). Multiplying Eq. (4.4) by
(n×) (cross product) and using êi × êj = εijkêk we get

 hS(− sinΘΦ̇ê3 × ê1 + Θ̇ê3 × ê2) = n×
δH

δn

=⇒  hS(Θ̇ê1 + sinΘΦ̇ê2) = n×
(
−
δH

δn

)
=⇒  hṠ = S×

(
−
δH

δS

)
, (4.5)

so we were able to obtain the equations describing the motion of S
from equations for Θ and Φ.

4.2 equations of motion in the ferromagnetic kondo

model

Consider now the more complicated problem of a lattice of spins
and the Ferromagnetic Kondo model. Our model consists of the dou-
ble exchange term, which intrinsically includes the interplay between
charge and spin, the Hund’s rule coupling and the spin interactions
(Exchange, DM):

H = −
∑
nm

tnmc
†
ncn −

1

2
JH
∑
n

Sn · c†nσcn +H ′ (4.6)

where tnm is the transfer integral for the hopping from site m to
site n, cn = (cn↑ cn↓) are the electron operators, JH is the Hund’s
coupling constant and H ′ is the Hamiltonian for spin interactions.
We shall call the other part of the hamiltonian the electron part He.
He can be simplified in the approximation of an adiabatic process
and large Hund’s rule coupling. In this case we can write the electron
operator as the product of a scalar, spin-independent operator and a
spinor:

cn = undn (4.7)
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where

un = un (Θn,Φn) =

(
cos Θn2

sin Θn2 e
ıΦn

)
, (4.8)

and the Hund’s rule coupling becomes

−
1

2
JH
∑
n

Sn · c†nσcn = −
JHS

2

∑
n

d†nu
†
n(σ ·n)undn =

= −
JHS

2

∑
n

dn † dn . (4.9)

We shall neglect this latter term, since it wont affect the significant
part of the e.o.m’s. The spin action in this case reads

A =

∫
dt

[
 hS
∑
n

cosΘn Φ̇n + ı h
∑
n

c†nċn −He −H
′

]
. (4.10)

Making use of approximation (4.7) and notation(4.8) we can compute:

tnmc
†
ncm = t̃nmd

†
ndm , (4.11)

where t̃nm is a complex effective hopping integral that can be written
tnmu

†
num = cos Θnm2 eıΦnm , with Θnm the angle between spins Sn

and Sm, the one defined by their dot product

cosΘnm = cosΘn cosΘm + sinΘn sinΘm cos(Φm −Φn) ,

and Φnm a phase depending non-trivially from Φn and Φm:

Φnm =

arg(t̃nm) = arctan

(
sin Θn2 sin Θm2 sin(Φm −Φn)

cos Θn2 cos Θm2 + sin Θn2 sin Θm2 cos(Φm −Φn)

)
.

(4.12)

Also useful in the derivation will be the term:

c†n ˙cn = d†nu
†
n(u̇ndn + unḋn) = d

†
nḋn + u†nu̇nd

†
ndn (4.13)

Substituting (4.11) and (4.13) into the action (4.10) we obtain

A =

∫
dt

[
 hS
∑
n

cosΘn Φ̇n + ı h
∑
n

(d†nḋn + u†nu̇nd
†
ndn)

+
∑
nm

t̃nmd
†
ndm −H ′

]
.

(4.14)
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Equations of motion are then found like in (4.2) (we shall omit to
write the integration over time, but this will be useful in some terms
to be integrated by parts):

(I) • δH ′

δΘn
= − hS sinΘn Φ̇n + ı h

δ

δΘn
(u†nu̇n)d

†
ndn

+
∑
m

[
tnm

δu
†
n

δΘn
umd

†
ndm + tmnu

†
m

δun

δΘn
d†mdn

]
(4.15)

(II) • δH ′

δΦn
=  hS sinΘn Θ̇n + ı h

δ

δΦn
(u†nu̇n)d

†
ndn

+
∑
m

[
tnm

δu
†
n

δΦn
umd

†
ndm + tmnu

†
m

δun

δΦn
d†mdn

]
(4.16)

The derivative terms in the equations above read:F To get this
equality this term is
integrated by parts

over time.
δ

δΘn
(u†nu̇n) =

ı

2
sinΘnΦ̇n (4.17)

δ

δΦn
(u†nu̇n)

F
= −

ı

2
sinΘnΘ̇n (4.18)

δu
†
n

δΘn
um = −

1

2
sin

Θn

2
cos

Θm

2

+
1

2
cos

Θn

2
sin

Θm

2
eı(Φm−Φn)

=
1

2
sin

Θnm

2
eıξnm (4.19)

where

ξnm =arctan
(

cos Θn
2

sin Θm
2

sin(Φm−Φn)

sinΘn
2

cos Θm
2

+cos Θn
2

sin Θm
2

cos(Φm−Φn)

)
(4.20)

u†m
δun

δΘn
= −

1

2
sin

Θn

2
cos

Θm

2

+
1

2
cos

Θn

2
sin

Θm

2
e−ı(Φm−Φn)

=
1

2
sin

Θnm

2
e−ıξnm (4.21)

δu
†
n

δΦn
um = −ı sin

Θn

2
cos

cosΘm
2

eı(Φm−Φn) (4.22)

u†m
δun

δΦn
= ı sin

Θn

2
cos

cosΘm
2

e−ı(Φm−Φn) (4.23)

Using relations (4.17)–(4.23), after rearranging, equations (4.15) and
(4.24) read

(I) •
 h

γ
sinΘn Φ̇n =

1

2

∑
m

[
tnm sin

Θnm

2
eıξnmd†ndm

+tmn sin
Θnm

2
e−ıξnmd†mdn

]
−
δH ′

δΘn
(4.24)
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(II) • − hS sinΘn Θ̇n = +
∑
m

[
tnm(−ı sin

Θn

2
cos

cosΘm
2

eı(Φm−Φn))d†ndm

+tmn(ı sin
Θn

2
cos

cosΘm
2

e−ı(Φm−Φn))d†mdn

]
−
δH ′

δΦn
(4.25)

where we have defined

γ ≡

(
S+

d
†
ndn

2

)−1

. (4.26)

Symmetrizing on the dummy indices that appear in the sums: fnm =

(fnm + fmn)/2 and expressing d†ndm and d
†
mdn by its symmetric

and antisymmetric terms:

d†ndm =
1

2

[
(d†ndm + d†mdn) + (d†ndm − d†mdn)

]
d†mdn =

1

2

[
(d†ndm + d†mdn) − (d†ndm − d†mdn)

]
,

(4.27)

we get, after a bit of manipulation following the main steps of what
we did in the previous section, and making the avergages at the end
(d†ndm →

〈
d
†
ndm

〉
):

 h

γ
ṅn = nn ×

(
−
δH ′

δnn

)
+
1

4

∑
m

tnm sin
Θnm

2

[
sin ξnm + sinχnm

sinΘn
ê1

+ (cos ξnm + cosχnm)ê2

]〈
d†ndm + d†mdn

〉
+
1

4ı

∑
m

tnm sin
Θnm

2

[
cos ξnm − cosχnm

sinΘn
ê1

+ (sinχnm − sin ξnm)ê2

]〈
d†ndm − d†mdn

〉
(4.28)

where the other phase that appears in the square brackets is defined
as

χnm = arctan

(
− sin Θn2 cos Θm2 sin(Φm −Φn)

cos Θn2 sin Θm2 + sin Θn2 cos Θm2 cos(Φm −Φn)

)
(4.29)

or more simply

 h

γ
ṅj = nj ×

(
−
δH ′

δnj

)
+
∑
m

F(Θj,Θm,Φj,Φm)
〈
d
†
jdm + d†mdj

〉
+
∑
m

G(Θj,Θm,Φj,Φm)
〈
d
†
jdm − d†mdj

〉
.

(4.30)
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Equation (4.28) is the equation of motion for the spins described by
n. It contains, apart from the usual effective magnetic field, two main
terms, both orthogonal (as it should be) to ṅ since it is a precessing
spin. We shall try to understand them by taking the limit of the almost
ferromagnetic case (small Θs) and see what is their physical meaning
(see next paragraph). We anticipate that the first term, proportional
to
〈
d
†
ndm + d†mdn

〉
can be attributed to effective ferromagnetic cou-

pling mediated by the conduction electrons, due to the double ex-
change in the Hamiltonian, while the second term, proportional to〈
d
†
ndm − d†mdn

〉
is to be associated with the torque exerted from the

spin-polarized conduction electrons to the spin texture. While it is in-
tuitive to understand the meaning of Θnm, the phases ξnm and χnm
are highly non-trivial, and deeper analysis on their behaviour with
respect to Θs and Φs is needed.

ferromagnetic limit If we consider the case where spins are
almost all parallel to each other (and to the z-axis), then sinΘ ≈ Θ and
cosΘ ≈ 1−Θ2/2. Let us rewrite the Hamiltonian He in this special
case. The term u

†
num becomes

u†num ≈
(
1−

Θ2n
8

)(
1−

Θ2m
8

)
+
ΘnΘm

4
eı(Φm−Φn) . (4.31)

Notice that (let S = 1)

S± = Sx ± Sy = sinΘeı±Φ ≈ Θeı±Φ , (4.32)

and

SznS
z
m ≈

(
1−

Θ2n
8

)(
1−

Θ2m
8

)
≈ 1− Θ

2
n

8
−
Θ2m
8

. (4.33)

Using (4.32) and (4.33), u†num becomes

u†num ≈
3

4
+
1

4
(SznS

z
m + S+mS

−
n) , (4.34)

and therefore

He ≈
3

4

∑
nm

tnmd
†
ndn+

1

4

∑
nm

tnm(SznS
z
m+S+mS

−
n)d†dm ≡ H0+ . . . .

(4.35)

Let us make this Hamiltonian symmetric and average out the fermionic
degrees of freedom, similarly as we did previously:

He = H0 +
1

8

∑
nm

tnmSn ·Sm
〈
d†ndm + d†mdn

〉
+
1

8ı

∑
nm

tnm(SxmS
y
n − SymS

x
n)
〈
d†ndm − d†mdn

〉
(4.36)
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We see that if we define an effective Exchange coupling

Jeffnm ≡
1

4
tnm

〈
d†ndm + d†mdn

〉
, (4.37)

the second term in this Hamiltonian is equivalent to the Heisenberg
exchange interaction for the ferromagnetic coupling. To understand
the last term, let us point out how the equations of motion for the
electron density nm at lattice point m look: (do not confuse this n
with the one describing the spin texture)

ı hṅm = ∂t(d
†
mdm) = ∂t [nm,H] =

[
d†mdm,

∑
nm

tnmd
†
ndm

]
. (4.38)

The only non vanishing commutators are

1

ı h

∑
l

tmld
†
mdl −

1

ı h

∑
l

tlmd
†
ldm =

∑
l

Il→m −
∑
l

Im→l (4.39)

where we have introduced Il→m as the micro-current from site l to
site m. This is related to the current density expression. Let xm+α/2

describe the midpoint coordinate of lattice points x and x+ α, along
the direction α, then the current density at point xm+α/2 is given by

jα(x+α/2) =
−e 〈ṅm〉
a2

= −
etnm

ı ha

〈
d†mdm+α − d†m+αdm

〉
. (4.40)

So, noticing (SxmS
y
n − SymS

x
n) = ẑ · Sm × Sn, the Hamiltonian can be

written like

H = H0+
1

2

∑
nm

JeffnmSn ·Sm−
 ha2

4

∑
m

∑
α=x,y

jα(x+α/2)ẑ · (Sm ×Sn)

(4.41)

which shows clearly the spin-polarized nature of the term propor-
tional to

〈
d
†
ndm − d†mdn

〉
.

We have seen that analytical computation of equations for the mo-
tion of Skyrmions in the complete quantum model can be very com-
plex, and one has to always make some approximations to achieve
the goal. In the next chapter a numerical study for such a motion will
be presented, and the obtained results compared with the predictions
from the solvable models.

4.3 motion of a tiny skyrmion excited by spin-polarized

currents : numerical simulation and v-j relation

We have simulated the motion, due to an in-plane current excitation,
of a small Skyrmion stabilized by frustrated exchange interactions on
a triangular lattice (see Fig. 4.1). The size of the Skyrmion is given by
the ratio of the competing interaction as in Eq. (2.33). The spin-torque
coupling considered is the one present in the Landau-Lifshitz-Gilbert
(LLG) equation.
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Figure 4.1: A plot of the skyrmion configuration during the simulation. The
color mapping indicates spin z-component going from -1 at the
centre of the Skyrmion, to 1 at its perifery. The x and y compo-
nents are plotted as arrows.

4.3.1 Model and methods

The frustration is given by the competition of ferromagnetic (JFM)
nearest-neighbour and anti-ferromagnetic (JAFM) next nearest-neighbour
interactions. The size of the Skyrmion is (in lattice constants):

ξ =
2π

arccos
(
JFM−JAFM
2JAFM

) . (4.42)

In all of our simulations the skyrmion has a size of six lattice con-
stants, given by JAFM = 1/2JFM.

We have numerically integrated the LLG equation at T = 0 using
a fourth order Runge-Kutta algorithm (see Appendix C). The simula-
tions were run for systems of 50x50, 150x150 and 250x250 sites of a
triangular lattice, with spins described by the Hamiltonian

H =
∑
nn

JFMSi ·Sj+
∑
nn

JAFMSi ·Sj−Bz
∑
i

Si,z−Kz
∑
i

S2i,z , (4.43)

where Kz represents z-anisotropy. We also included non-adiabatic cor-
rections (β) in the LLG equation:

Ṡ = −S×Heff +αS× Ṡ+
p

2e
(j · ∇)S−

p

2e
βS× (j · ∇)S . (4.44)

To evaluate this equation we need to express Ṡ only in terms of S
and derivatives. To do so, substitute for Ṡ in the Gilbert damping
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term, the expression given by the equation itself, use A× B×C =

B(A ·C) −C(A ·B) and the fact that S has unitary magnitude, so the
product of it with time or space derivatives is zero. We get then the
other form for the LLG equation:

Ṡ =−
1

1+α2
S×Heff − α

1+α2
S×S×Heff

+
p

2e

1+αβ

1+α2
(j · ∇)S+

p

2e

α−β

1+α2
S× (j · ∇)S . (4.45)

The skyrmion solutions were found by minimizing the magnetic
energy with a Monte Carlo method and then by further relaxing the
spin texture by integrating the LLG equation for j = 0. We used a
value of α = 0.03, which is the typical value for ferromagnetic metal,
and β = α. In the natural units of the simulation, JFM = 1 = 2JAFM
and B = 0.4. After good convergence of the spin configuration was
achieved, checked by energy calculations, we switched on a steady
electric current density j = jxx̂, spin polarized and with polariza-
tion p = 0.2, and then studied the dynamics of the spin texture.
The units of our simulation are, for time τ =  h/JFM and for current
κ = 2eMJFM/a2 h. Considering a typical lattice size a = 5Å and mag-
nitude of local magnetic moment M = 1, the values of τ and κ are
τ ' 6.5 · 10−13 s and κ ' 2 · 10−12 A/m2, respectively. The unit of veloc-
ity is then µ ' 7.8 · 102ms−1.

4.3.2 Results and conclusions

The center-of-mass motion for several values of the applied exter-
nal current are shown in figure 4.2. From this figure it can be seen
that, for all values of the current, the motion of the skyrmions starts
off at a large angle with respect to the conduction electrons velocity
(cfr. Vs Fig. 4.1). Successively they reach a steady state angle, corre-
sponding to steady values of x and y components of velocity. This
behaviour is evident from the plot in Fig. 4.3, where it can also be
noticed that there are some oscillations even in the steady state phase
of the motion, with amplitudes proportional to the applied current
and frequencies ranging in the GHz range. These oscillation can be
the result of rotation of the skyrmion together with translation, while
the varying of the amplitudes can be an effect of instability versus
the applied electrical current. Indeed we found that for values of the
current already from ∼ 1.5 · 1010Am−2 these oscillation diverge, indi-
cating a destruction of the skyrmion, or in other words a transition
to a more favourable magnetic state. This can be clearly seen from a
plot of the total magnetic energy with respect to the the ferromagnetic
state (shown in Fig. 4.4–a) and of the Skyrmion topological charge
(Fig. 4.4–b). To better understand this behaviour of the Skyrmion, a
deeper investigation is needed. For example, exploring different val-
ues of the parameters (like applied magnetic field, anisotropy con-
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Figure 4.2: Numerical solutions of the center of mass motion of a single
Skyrmion for different magnitudes of the applied current on the
x-direction.
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Figure 4.3: Drift angle of the Skyrmion centre of mass plotted versus time.
The angle has a maximum at the beginning of the motion while
it reaches a steady state value for long integration time, where
some oscillations are also present. These oscillation might be the
effect of the rotation of the Skyrmion or of instabilities due to the
metastable nature of the spin state.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000dr
ift

 a
ng

le
 =

 a
rc

ta
n(

v y
/v

x)
 (d

eg
re

es
)

time (units of h/(2 pi J)) = 6.5e-13 s

Skyrmion Drift Angle - lattice 150x150 - Sk. size = 6

j=0.001 j=0.002 j=0.003

stant and JAFM/JFM), to put ourself in different points of the phase
diagram. These fluctuations can in fact be the result of a state too
close to a phase transition point, thus resulting in instabilities. Fur-
ther investigation is also required about the rotational behaviour of
the motion, where we could introduce a quantization of the total an-
gular momentum proper of a system of nanometres size dominated
by quantum physics. Given our parameters, we have seen however
the tendency to reach a steady average drift velocity vd. A plot of the
parallel component to the current is shown in Fig. 4.5. As expected
from simulations and experiments on bigger types of Skyrmions (sta-
bilized by antisymmetric interactions) and from the Thiele equation,
the drift velocity is linearly proportional to the applied current den-
sity, and the numerical values are actually comparable to the ones
of the universal current-velocity relation found by Iwasaki and co-
workers [40] for Skyrmions (lattice phase) 50 lattice constants big.

A major improvement of this simulation is to be searched in the so-
lution of the problem stated in the previous section 4.2. Of particular
relevance would be the understanding of the last term in Eq. (4.28),
to obtain a form of the spin-torque coupling coming entirely from a
microscopic model.
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Figure 4.4: Figures showing the instability of the small single Skyrmion ver-
sus the applied electric current. Panel a shows the total mgnetic
energy with respect to the ferromagnetic phase, while Panel b a
plot of the Skyrmion topological charge w.r.t. time. There occurs
a phase transition to a state close to FM in energy and with zero
topological charge for bigger values of currents.
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Figure 4.5: v− j relation for a small, single Skyrmion showing a linear de-
pendence at low currents.
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To conclude, we have attempted at deriving equations for the mo-
tion of Skyrmions excited by means of spin-polarized currents exci-
tation, where more research is needed in to unfold the interpretation
of functions F and G of Eq. (4.30) in order to decouple the persistent
spin-current terms coming from the non-zero Berry phase from the
applied currents of which we want to study the spin-torque effect.
For the sake of approaching a complete microscopic understanding
of Skyrmion dynamics, we have also numerically simulated the mo-
tion of a tiny Skyrmion stabilized by frustrated exchange interactions.
By using a discretized version of the classical LLG equation, we have
found that also for such small Skyrmions there is a linear dependence
between their drift velocity and the applied electric current. We have
seen, however, unusual behaviours related to initial phases of the mo-
tion and rotational patterns in the steady state. Further development
of this research will include the quantization of such rotations and the
systematic study of the Skyrmion drifting motion for a wider range
of parameters of the Hamiltonian.
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A
T H E T O P O L O G I C A L C H A R G E

a.1 geometrical meaning

The spin direction n(x,y) subject to the constraint∑
α

nα(x,y) = 1 (A.1)

can be described in terms of the two spherical angles Θ(x,y) and
Φ(x,y). Thus we can write n (Θ(x,y),Φ(x,y)), and the spatial deriva-
tives become

∂xn = ∂Θn∂xΘ+ ∂Φn∂xΦ,

∂yn = ∂Θn∂yΘ+ ∂Φn∂yΦ.
(A.2)

The cross product between these partial derivatives is thus trans-
formed as

∂xn× ∂yn = (∂Θn× ∂Φn) (∂xΘ∂yΦ− ∂xΦ∂yΘ) (A.3)

The last term in brackets in Eq. (A.3) is the inverse Jacobian

(|J|−1) =

[
det

(
∂Φx ∂Θx

∂Φy ∂Θy

)]−1
of the transformation we are considering:

x = sin(Θ) cos(Φ),

y = sin(Θ) sin(Φ).
(A.4)

Expressing the topological charge in spherical coordinates we get

Q =
1

4π

∫∫
d2xn · (∂xn× ∂yn)

(A.3)
=
1

4π

∫∫
|J|dΘdΦn · (∂Θn× ∂Φn) |J|−1

=
1

4π

∫∫
dΘdΦn · (∂Θn× ∂Φn) .

(A.5)

Since we have the constraint (A.1), the integrand in the last expression
is the solid angle element

dΩ = dΘdΦn · ∂Θn× ∂Φn, (A.6)

thus we see that the topological charge is

Q =
1

4π

∫∫
dΩ, (A.7)

i. e. the number of times n wraps the unit sphere as we span the
coordinate space R2.
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a.2 explicit calculation

Using the radial symmetry of the skyrmion we can write

Θ = Θ (ρ) , (A.8)

Φ = Φ (ϕ) = mϕ+ γ, (A.9)

where we have introduced the vorticity m, the helicity γ (see Fig. 1.2)
and the polar coordinates r = (x,y) = (ρ cos (ϕ) , ρ sin (ϕ)). Thus the
spin direction vector field can be written

n (r) = ( sinΘ(ρ) cosΦ(ϕ), sinΘ(ρ) sinΦ(ϕ), cosΘ(ρ) ) . (A.10)

Using this in Eq. (A.5) we get

Q =
1

4π

∫∞
0

dρ

∫2π
0

dΘ(ρ)

dρ

dΦ(ϕ)

dϕ
sinΘ(ρ)

= [cosΘ(ρ)]ρ=∞ρ=0 [Φ(ϕ)]ϕ=2π
ϕ=0 ,

(A.11)

If we consider the case of a skyrmion in a FM background where
spins point in the positive z direction (and so Θ(ρ =∞) = 0), then at
the center of the skyrmion the spin points down (Θ(ρ = 0) = π), thus
[cosΘ(ρ)]ρ=∞ρ=0 = 2. The vorticity is defined asm = [Φ(ϕ)]ϕ=2π

ϕ=0 /2π = ±1,
hence we have that

Q = m = ±1. (A.12)

For DM stabilized skyrmions, the lowest energy configuration has
m = +1 and γ = ±π/2, where the sign of γ is determined by the
vector D, in turn determined by the crystal symmetries. For skyr-
mions forming through four-spin exchange or frustrated exchange
interactions, all cases (m = ±1, γ = 0,±π/2,π) are degenerate.



B
S P I N S TAT E A N D T H E B L O C H S P H E R I C A L
R E P R E S E N TAT I O N

The spin state can be described as a superposition of |↑〉 and |↓〉 in the
Bloch representation as

|n〉 = cos
Θ

2
|↑〉+ sin

Θ

2
eıΦ |↓〉 , (B.1)

where Θ(r) and Φ(r) describe the spin orientation in spherical coor-
dinates. Using (B.1) we can explicitly compute some of the numerical
quantities needed for the derivations in the main text of this thesis.

b.1 computation of 〈n | ∂t |n〉 , 〈n |∇ |n〉 and 〈n | ∆ |n〉

This is a straightforward computation, so we shall perform it for the
first term and only state the result for the other two, found in a similar
way:

〈n|∂t |n〉 =
(

cos
Θ

2
sin

Θ

2
e−ıΦ

)
∂t

(
cos Θ2
sin Θ2 e

ıΦ

)

=

(
cos

Θ

2
sin

Θ

2
e−ıΦ

) − Θ̇2 sin Θ2(
Θ̇
2 cos Θ2 + ıΦ̇ sin Θ2

)
eıΦ


= ı

(
sin

Θ

2

)2
Φ̇ =

ı

2
(1− cosΘ)Φ̇ .

(B.2)

In a similar fashion we obtain the rest of relations (3.7).

b.2 spin vector and mixed products

Let us prove, by explicit calculation of the RHS, the equality

sinΘ(∂jΘ∂kΦ− ∂kΘ∂jΦ) = n · ∂jn× ∂kn . (B.3)

Expressing n in its Cartesian coordinates:

n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) (B.4)

we have

∂jn =

 cosΘ cosΦ∂jΘ− sinΘ sinΦ∂jΦ

cosΘ sinΦ∂jΘ+ sinΘ cosΦ∂jΦ

− sinΘ∂jΘ

 . (B.5)
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Then, we can proceed in computing the cross product:

∂jn× ∂kn =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂jnx ∂jny ∂jnz

∂knx ∂kny ∂knz

∣∣∣∣∣∣∣∣ : (B.6)

X-component = − sinΘ∂kΘ(cosΘ sinΦ∂jΘ+ sinΘ cosΦ∂jΦ)

+ sinΘ∂jΘ(cosΘ sinΦ∂kΘ+ sinΘ cosΦ∂kΦ)

Y-component = + sinΘ∂kΘ(cosΘ cosΦ∂jΘ− sinΘ sinΦ∂jΦ)

− sinΘ∂jΘ(cosΘ cosΦ∂kΘ− sinΘ sinΦ∂kΦ)

Z-component =

(cosΘ cosΦ∂jΘ− sinΘ sinΦ∂jΦ)(cosΘ sinΦ∂kΘ+ sinΘ cosΦ∂kΦ)

−(cosΘ cosΦ∂kΘ− sinΘ sinΦ∂kΦ)(cosΘ sinΦ∂jΘ+ sinΘ cosΦ∂jΦ)

Finally, multiplying (dot product) this with n:

n · ∂jn× ∂kn = − sin3Θ∂kΘ∂jΦ+ sin3Θ∂jΘ∂kΦ− sinΘ cos2Θ∂kΘ∂jΦ

+ sinΘ cos2Θ∂jΘ∂kΦ = sinΘ∂jΘ∂kΦ
(
cos2Θ+ sin2Θ

)
− sinΘ∂kΘ∂jΦ

(
cos2Θ+ sin2Θ

)
= sinΘ(∂jΘ∂kΦ− ∂kΘ∂jΦ)

we get the equality (B.3). It can be similarly shown that

sinΘ
(
−δΘΦ̇+ Θ̇δΦ

)
= n× ṅ · δn (B.7)

and

sinΘj · (δΘ∇Φ−∇ΘδΦ) = n× (∇ · j)n · δn . (B.8)



C
F O U RT H O R D E R R U N G E - K U T TA M E T H O D

The family of Runge-Kutta algorithms are amongst the most robust
and consistent methods used in the numerical integration of differen-
tial equations. The problem to solve is of the type ẋ = f(x, t), x(0) =
x0. At a particular order N this method finds the approximated value
of the function at time t+ dt, by knowing the function and its deriva-
tive at time t, as a weighted average of N points interpolated in the
time interval dt with different estimations of the gradient of x. In
the fourth order case, the most used of these methods for the good
balance of accuracy and computing costs, the algorithm (RK4) reads:

x(t+ dt) = x(t) +
dt

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(t,y(t))

k2 = f(t+
dt

2
, x(t) +

dt

2
k1)

k3 = f(t+
dt

2
, x(t) +

dt

2
k2)

k4 = f(t+ dt, x(t) + dtk3)

(C.1)

More weight is given to the increments estimated by the slopes at
middle interval points. The weights are such that, if f does not de-
pend on x (normal integral), then this algorithm corresponds to Simp-
son’s method for integrals. The RK4 method is a fourth-order method,
meaning that the local truncation error is of the order ofO(dt5), while
the total accumulated error is order O(dt4).

In our simulation we have such equations for each of the three
components of spin, and f is a vector given by the LLG equation. An
extract of the code is shown in Listing C.1.
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54 fourth order runge-kutta method

Listing C.1: RK4 algorithm example in matlab.

1 % INPUT PARAMETERS

2 % dt = integration step

3 % Sx,Sy,Sz = value of spins at time t

4 % a = Gilbert damping

5 % b = non-adiabatic effects

6 % J1,J2 = nn and nnn Exchange constants (>0)

7 % Hx,Hy,Hz = magnetic field

8 % Kz = Z-anisotropy constant (term in the hamiltonian -Kz*
Sz^2 )

9 % jx = current density

10 %

11 function [SxNext,SyNext,SzNext] = rk4Step(dt,Sx,Sy,Sz,a,b,J1,J2,

Hx,Hy,Hz,Kz,jx)

12 dt6 = dt/6.0;

13 % computing the different interpolation points

14 [k1X,k1Y,k1Z] = llgFunction(Sx,Sy,Sz,a,b,J1,J2,Hx,Hy,Hz,Kz,jx

);

15 [k2X,k2Y,k2Z] = llgFunction(Sx+0.5*k1X*dt,Sy+0.5*k1Y*dt,Sz

+0.5*k1Z*dt,a,b,J1,J2,Hx,Hy,Hz,Kz,jx);

16 [k3X,k3Y,k3Z] = llgFunction(Sx+0.5*k2X*dt,Sy+0.5*k2Y*dt,Sz

+0.5*k2Z*dt,a,b,J1,J2,Hx,Hy,Hz,Kz,jx);

17 [k4X,k4Y,k4Z] = llgFunction(Sx+k3X*dt,Sy+k3Y*dt,Sz+k3Z*dt,a,b

,J1,J2,Hx,Hy,Hz,Kz,jx);

18 % computing the weighted average

19 SxNext = Sx + dt6*(k1X + 2.0*k2X + 2.0*k3X + k4X);

20 SyNext = Sy + dt6*(k1Y + 2.0*k2Y + 2.0*k3Y + k4Y);

21 SzNext = Sz + dt6*(k1Z + 2.0*k2Z + 2.0*k3Z + k4Z);

22 end �
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