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Abstract

Latest research in a field of spintronics has shown strong mutual interac-
tion between magnetization dynamics and spin polarized electronic trans-
port. A spin polarized current can drive magnetization dynamics, while
resonant magnetization dynamics can lead to generation of the spin cur-
rent. The first effect is originated due to the spin torque mechanism, while
the second one is related to the spin pump effect. In fact these two ef-
fects are of the same nature and are strongly depended on the properties of
interface between ferromagnetic and paramagnetic metals.

In this work we study magnetization dynamics of mesoscopic ferromag-
netic strip which is contacted by paramagnetic metals. Two experiments are
reported. In a first one we show the applicability of the coplanar strip waveg-
uide for driving and electrical detecting the uniform precession mode of the
ferromagnetic resonance in an on-chip device with a micrometer sized ferro-
magnetic strip. The second experiment was designed for estimation of the
magnetization precession amplitude. We have utilized effect of anisotropic
magneto resistance, which is, for our knowledge, the first experiment of this
type on a submicron ferromagnetic particle in a coplanar spintronics device.

In addition, theoretical analysis of the uniform magnetization dynamics
has been made with a brief inside into nonuniform effects e.g. spin wave
generation.

We have also estimated the effect of the spin pumping in our devices by
analyzing existing theoretical models which are describing this phenomena.
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Chapter 1

Introduction to spintronics and
magnetoelectronics

Since the discovery of Giant Magneto Resistance (GMR) effect [1], transport
properties of ferromagnetic (FM) materials, as well as FM/NM (normal
metal) interfaces are attracting a lot of attention. The main reason for
that is a strong coupling between charge transport and spin transport in
FM, which can open a way for creating new type of devices and combine
functionality of pure electrical and pure magnetic effects resulting in a new
field of physics known as the ”spintronics” or ”magnetoelectronics” [2].

Back in 1936 Mott provided a pioneering idea which become the basis for
a spin dependent transport [3]. He realized that when the spin flip processes
are not strong enough the antiparallel with respect to the spin degree of
freedom electron states do not mix during the scattering processes. In easy
words, electronic transport in ferromagnets is spin polarized. Later, this has
been developed into a comprehensive spin transport model, which provides
an explanation for a various of magnetoresistive phenomena known as Valet
and Fert "two current model” [4].

The phenomena of spin polarized current has a close relation to the
operation of GMR devices [1], which consists of sandwich-like structure,
where two ferromagnets (FM) are separated by a layer of paramagnetic
metal (NM).Two types of GMR structures can be distinguished: current
flows parallel (CIP, current in plane) or perpendicular (CPP, current per-
pendicular to the plane) to the interfaces between the different layers, as
depicted in Fig.1.1.

In both geometries, the resistance depends on the relative orientation of
the magnetizations M; and M,, which is generally called "spin valve effect”
[5]. The functionality of the GMR structure can be simply characterized,
when one is talking about CPP geometry, however, the physics which stands
behind the CIP geometry is not much different.

The key ingredients for the GMR devices are the large spin polariza-
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Figure 1.1: Schematic illustration of (a) the current in plane (CIP), (b) the
current perpendicular to the plane (CPP) giant magnetoresistance geometry

12].

tion of the current and the ability to control the relative orientation of the
magnetization in ferromagnetic layers.

The confirmation of spin polarization of the current which flows through
the FM/NM interface was shown by Jedema et. al. [6]. The authors were
able to detect the pure spin current by separating it from a charge current
using the spin valve geometry, which become known as a non-local spin
detection.

It was actually shown that dynamics of magnetization in ferromagnetic
layers and effect of spin polarization of the current has a strong impact on
each other. Berger [7] and Slonczewski [8] independently predicted that
spin current can induce a torque on magnetization of ferromagnet. This
was experimentally demonstrated by Tsoi et. al.[9] as a magnetization pre-
cession driven by spin polarized current in (Co/Cu)y multilayers, whereas
Myers et. al.[10] observed switching of the orientation of magnetic moment
by perpendicular electric current in Co/Cu/Co sandwich. Much earlier, a
coupling between a dynamic ferromagnetic magnetization and spin accu-
mulation in adjacent normal metals has been postulated by Janossy and
Monod [11] and Silsbee et. al. [12].

The effect of the spin transport on magnetization dynamics was shown
by Mizukami et. al [13], in an experiment on ferromagnetic resonance in a
FM/NM sandwich, where the influence of the spin flip rate in a NM on a
line width of the resonance has been demonstrated.

Recently, a theoretical model which describes the coupling between mag-
netization dynamics and spin transport was developed by group of Gerrit
Bauer in Delft University of Technology. They predict that resonance pre-
cession of ferromagnetic magnetization can induce spin current flow from
FM into NM. This effect got a name ”spin pumping” and explains results



of Mizukami’s experiment as an angular momentum loss of the FM due to
injection of the spins into adjacent NM.

The spin pumping effect provides a possibility to create a source of pure
spin current - spin battery, where a ferromagnet under resonance magneti-
zation precession will emit spins into an adjacent conductor. The pure spin
current can be used for reversing magnetization of another ferromagnet ac-
cording to the spin torque mechanism [8, 7].

All the effects described above can be generally called ”nonlocal magne-
tization dynamics”. A comprehensive review of this phenomena is written
by Tserkovnyak et. al. [14].

In this work the main focus is to study the dynamics of ferromagnetic
magnetization by means of electrical detection, with the ultimate goal of cre-
ating a spin battery. The theoretical aspects of ferromagnetic resonance are
written with reference mainly to Gurevich and Melkov [15] and are presented
in Chapter 2. Chapter 3 is devoted to experiments on detecting ferromag-
netic resonance (FMR) of submicron sized permalloy strip using magnetic
flux pick-up method. In Chapter 4 experiments on detecting FMR using
the AMR (the anomalous magneto resistance) effect are shown. Chapter 5
analyzes the existing models for spin battery [16, 17]. The last chapter is
devoted to the basic concepts of the spin waves physics, which could play
an important role in nonlocal effects driven by magnetization dynamics.






Chapter 2

Uniform dynamics of
ferromagnetic magnetization

2.1 Equation of motion for vector of magne-
tization

In order to describe the dynamics of ferromagnetic magnetization it is usu-
ally not necessary to consider the microscopic picture of ferromagnet. It
is more convenient to describe the magnetic state of the FM by introduc-
ing the so-called macro-spin M , which is defined as the total magnetic
moment per unit volume. Below the Curie temperature the magnitude of
M is equal to the saturation magnetization M, which for bulk permal-
loy (Py = NiggFey) is poMs; ~ 1 T. An applied magnetic field H ex-
erts a torque on M , resulting in precessional motion of the magnetization
(Fig.2.1):

dM

dt

where v = gup/h is the gyromagnetic ratio, which can vary for differ-

ent materials since it also includes the orbital motion contribution to the
magnetization. For permalloy, v has the value 176 GHz/T.

An important property of equation (2.1) is that it conserves the modulus
of the vector of magnetization, which reflects our approximation of the
macro-spin model.

The solution of the torque equation (2.1) is the vector, which is pre-
cessing around the direction of effective magnetic field. When the system
obeys spherical symmetry, vector M is drawing the circle (circular preces-
sion), in other cases the trajectory is more complicated. In this work, the
main attention will be paid to the elliptical precession, which is common
for ferromagnetic thin films and strips.

= M x H (2.1)
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2.2 Damping of the precessional motion

The equation of motion (2.1) for the magnetization is valid only in the ideal
case, when energy of the precessional motion does not dissipate. In reality
there are a number of dissipation mechanisms, such as thermal motion of
the crystal lattice, spin-orbit interaction, magnetic inhomogeneity of sample
and applied field, spin diffusion into adjoined metal, and so on.

A way to include dissipation was suggested by Landau and Lifshitz [18]
by introducing a phenomenological parameter of dissipation A, resulting in:

dM . W
where the first term is as before, while the second term accounts for

dissipation.

A more simplified equation was suggested by Gilbert [19], in which the
product M x H was approximately replaced by —7*18]\2 /0t in dissipation
term. A new dimensionless damping parameter « = —\/M, was intro-
duced , known as the Gilbert damping parameter, resulting in a well known
Landau-Lifshitz-Gilbert (LLG) equation:

dd—]‘f:—nyHJr]\zded—]\f (2.3)

The last equation describes the dissipation as a some sort of ”friction
force” which is proportional to the rate of changing of the M. Tt can be
easily checked that eq.(2.3) is different from eq.(2.2) only in second order
of o, which is negligible since typical range for o is 1072..1073.

It is important to note that in frame of macro-spin approach, dissipation
leads only to the damping of the precession cone angle, while magnitude of
the M remains constant. The LLG model, indeed, satisfies this condition.

2.3 Magnetization dynamics of a thin film

In order to describe the motion of the magnetization in a thin film, one has
to solve the LLG equation including the shape anisotropy, which results in
elliptical rather than circular precessional motion of the magnetization.

Let’s consider the tangentially (in-plane) magnetized thin film (Fig.2.1).
The film is assumed to be a single domain with a saturation magnetization
M.

The external bias magnetic field I—fo is also applied in-plane, while the
driving radio frequency field h,¢(t) is applied in the out-of-plane direction.
Since the thickness of the film is much smaller than the lateral sizes, only the
out-of-plane demagnetization field must be taken into account [20], resulting
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Figure 2.1: Schematic illustration of magnetization precession in a FM thin
film. The demagnetizing field Hy exists only in the ¢ direction and opposes
m, magnetization.

in an effective magnetic field inside the film H(t) = [—N,my(t) + hys(t)] -
Y+ Hy - Z, where N, is the out-of-plane demagnetizing factor, which is in
our case approximately equal to 1.

The magnetization vector can be written as M(t) = my(t) - Z + my(t) -
¥+ M, - Z, where it is assumed that angle of precession is small, resulting
in unchanged magnetization along the Z direction.

It is convenient to solve LLG equation in terms of complex amplitudes.
For those we assume the circular polarization of the driving r f field h,¢ () =
hoe™* and the ansatz solution for the LLG equation (2.3) will be m,, (t) =
m, et 1 Later, the real solutions for the time dependent magnetization
can be found as my, (t) = Re[m,,e™"]. This will give response of the
system on a driving field of the form h, s (t) = hocoswt.

For small angle precession, the LLG equation can be linearized in vicinity
of equilibrium state, which corresponds to magnetization vector aligned
along the 2" direction, namely dm, /0t = 0.

Substitution of the M(¢) and H(t) into LLG equation and further ne-
glecting of all the quadratic terms and cross-products of hg, m, and m,
leads to the following system of algebraic linear equations:

iwm, = —vy(Ho+ My)my, +vyMshy + iwam,

iwm, = —vyHym, —iwvam, (2.4)

In order to find the eigenfrequency of the magnetization precession, we
set hg = 0, then a nontrivial solution will exist only when the determinant

IThe requirement of the circular polarization of the r f field in general is not necessary
since the linearly polarized field can be presented as a superposition of right and left
circular polarizations. Then, coordinate transformation into rotation frame and rotation
wave approximation (RWA) allows to consider only one circular polarization [21].
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of the system is equal to 0. This condition gives us the eigenfrequency of
the precession:
wi =~*Hy (Hy + M,) (2.5)

where all the terms quadratic in o were neglected. Eq.(2.5) gives the
frequency of the ferromagnetic resonance (FMR) in a thin film and is an ex-
treme case of the famous Kittel’s equation for the FMR of the ferromagnetic
ellipsoid [20].

2.4 Frequency dependence of the magnetic
susceptibility

When eigenfrequency of the ferromagnetic precession is found the solution

of the LLG equation for the vector of magnetization M (t) can be written.
Since the LLG equation assumed to be linear, the solution for time

dependent magnetization m = my(t) - £ + m,(t) - ¥ will have a form:

my = X1(w,wo)hrf(w) (2.6)
Using relation (2.6) the solution of the equation (2.4) can be written as:

vHy + iwo
w? — wt —iway (2Hy + M)

xr (w) = —vM; (2.7)

w

xr (w) = vMs— (2.8)

w? — wg — iwary (2Hy + M)

were wy is the FMR frequency given by Eq.(2.5), index L stays for ¢ di-
rection and reflects longitudinal magnetization response on the driving field,
while index T' defines ¥ direction, which is transverse to the polarization of
the rf field.

Both the transverse and longitudinal susceptibilities have a pole when
w = wp. The behavior of the susceptibility as a function of the applied
magnetic field is shown in Fig.(2.2). Since the susceptibility is a complex
function it is useful to note, that imaginary part responsible for energy
which is absorbed by precessing magnetization, while real part is a disper-
sive component and relevant to the group velocity of the propagation of
electromagnetic waves through the FM.

The amplitude of the ferromagnetic precession, which is usually ex-
pressed in terms of the precession cone angle 8 = xr,ho/M, can be much
larger than the amplitude of the driving field (in terms of cone angle hy/Mj),

8
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Figure 2.2: Real and imaginary parts of longitudinal high frequency mag-
netic susceptibility yr(w) as a function of applied magnetic filed for an
8 GHz driving field and Gilbert damping parameter o« = 0.015.

which is a signature of the fact that magnetization is precessing in resonance
(coherently) with an r f-field. In other words, after switching on the r f-field,
the energy which is absorbed by the system during one period of the pre-
cession is larger than the energy dissipation caused by damping processes.
Since the dissipation term in the LLG equation (2.3) is proportional to the
amplitude of precession, the settled amplitude will be finite and defined by
ho and «.

Time dependence of the x and y projections of magnetization as a re-
sponse to the driving field h,;(t) = hocoswt are shown at fig.2.3 for the
resonance at 8 GHz. The real amplitude of m,, m, and h, f are given in
terms of #-angle of precession.

As was mentioned before, magnetization precession in a thin film is not
spherical, but elliptical, where the elipticity is caused by the presence of a
demagnetizing field in the y direction. The expressions for the magnetic
susceptibility allows us to find the ellipticity parameter at resonance, which

1S:
H,
e Xt _ (2.9)
XT at w=wq HO + MS

Sweeping either the bias magnetic field or the frequency of the driving
field through the resonance does not change the elipticity of precession only
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Figure 2.3: Time dependence of the x and y projections of the magnetization
for the resonance at 8 GHz driving field and Gilbert damping parameter
a = 0.015.

the amplitude.

2.5 Magnetization dynamics of a ferromag-
netic strip

In a FM strip the demagnetizing field must be accounted for in two direc-
tions, namely in ¢ and 7, if the strip is elongated in the Z direction.

By following the same procedure as for the thin film, one can find the
FMR dispersion law and the frequency dependence of magnetic susceptibil-
ity.

For a bias magnetic field applied along the Z’ direction, the magnetization
vector is written as M (t) = (mg(t), my(t), My). The effective magnetic field
will have the form ﬁeff = (=Nymy, hg — Nymy, Hy + H,,) for a driving
r f-field linearly polarized in the g-direction. An additional anisotropy field
H,, has been introduced in order to account, if necessary, for crystalline
anisotropy, remanent magnetization, etc., and N, and NV, are demagnetizing
factors of the strip as calculated in [22].

Under the above conditions, the FMR dispersion takes the following
form:

Wi = VA (Ho + Hap + Ny M,)(Ho + Hon + Ny M,) (2.10)

10
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Figure 2.4: (a)Photograph of coplanar waveguide (CPW) used in the Pulsed
Inductive Microwave Magnetometer (PIMM) system [28]. (b) Optical mi-
crograph of the CPW used in measuring of resonance absorption of ferro-
magnetic rings [26]

and the frequency dependence of the susceptibility is as follows:

Y(Ho 4+ Hyp + No M) + twa
i (@) = —y 1, — 2l )

2.11
w? — wg — iwary (2(Hy + Hup) + M) ( )

w
— M,
XT (w) v w2 — wg — iLUOé’y (2(H0 + Han) + MS)

(2.12)

2.6 FMR experiments

Ferromagnetic resonance allows us to study not only the magnetization dy-
namics, but also properties of the FM material, such as the saturation mag-
netization My, anisotropy field, gyromagnetic ratio v and Gilbert damping
parameter a.

FMR experiments date back to the early 50’s. At that time, FMR
detection was based on the power absorption technique, in which bulk piece
of ferromagnet was embedded in a microwave cavity and positioned in a
bias magnetic field [23]. A modern variation on this technique for studying
the magnetization dynamics of thin ferromagnetic films or ensembles of
ferromagnetic micro-particles is to use coplanar waveguide (CPW) [24] with
the ferromagnetic material on top of it [25, 26, 27|, (Fig.2.4).

The next family of FMR experiments is based on the detection of the
magnetic flux, which is created by the motion of the vector of magnetiza-
tion. Here, the method is based either on the direct detection of a flux
by positioning inductive pick-up coil close to the ferromagnet, or by sens-
ing the modified inductance of the CPW, which is filled with ferromagnetic
material [29, 30].
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Recently, a few more techniques have been reported. Among them are
FMR detection by using anomalous magneto resistance (AMR) effect, in
which the resistance of the ferromagnet depends on the relative orienta-
tion between the magnetization and the direction of current flow [31, 32]
and magnetic flux detection using a superconducting quantum interference
device (SQUID) [33, 34].

12



Chapter 3

On-chip detection of
ferromagnetic resonance of a
single submicron permalloy
strip

3.1 Aim of the experiment

Experiments on spin pumping (Chapter 4 of this thesis) requires uniform
precession of magnetization of small ferromagnetic particle. Another re-
quirement is a large cone angle of that precession, which can be provided
by spatially localized high intensity r f magnetic field.

The devices presented in this experiment were designed to study the
cross-talk between two coplanar strip wave guides (CSW) in a close prox-
imity, in which one wave guide is used to drive a high amplitude, localized
r f-field, and the second one to detect it. We use a magnetic flux pick-up
detection method for performing a highly sensitive FMR experiment on an
individual submicrometer size ferromagnetic strip. We show that FM strip
can be driven in a uniform magnetization precession mode.

3.2 Device fabrication and measurement tech-
niques

Fig.3.1(a) shows a schematic illustration of the device used in this study,
while the scanning electron microscope picture of the central region of the
device which contains a ferromagnetic strip is presented in Fig.3.1(b). The
permalloy (Py = NiggFey) strip is positioned at 2.5 um distance from the
shorted-end of a CSW on the left side of the sample and connected with the
copper (Cu) leads to another CSW on the right side (Fig.3.1(a)). The CSW

13
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Figure 3.1: (a) Schematic diagram of the device used in experiment. On
the left side the rf current passes through the shorted-end of the coplanar
strip and generates an rf magnetic field h,; according to the Biot-Savart
law. The magnetization precession in the Py strip at resonance induces a
magnetic field hpyrr. The pick-up ac voltage is measured using the coplanar
strip situated at the right side of the device connected to the spectrum
analyzer. (b) The scanning electron microscope picture of central part of
the device (rotated by 90° with respect to the upper figure).

structures were made of Au (300 nm thick) by means of optical lithography
on a lightly doped silicon wafer with a 500 nm thermal oxide surface layer.
The rest of the structure, the Py strip (25 nm thick) with 0.3 x 3 pm?
lateral size and the Cu leads (80 nm thick), were made using electron-
beam lithography and lift-off. The left and right CSW are designed to
have nearly 50 €2 impedance [24] and connected by means of microwave
picoprobes to an rf signal generator (SG) and a spectrum analyzer (SA)
respectively. For all measurements the output power of the signal generator
was set at 20 dBm (100 mW), however the power that reaches the sample
is significantly reduced.

As shown in Fig.3.1(a), when an alternating current flows through the
shorted-end of a CSW, it generates an rf, transverse to the strip, mag-
netic field h,¢(¢). This field creates a flux (the primary flux) through the
Py/Cwu loop and induces voltage in the loop according to Faraday’s law.
Furthermore, if the frequency of the rf field is equal to the frequency of
magnetization precession of the Py strip (i.e FMR condition), the resonant
magnetization precession creates an additional flux (the FMR flux) through
the loop, as well as additional induced voltage. Thus the measured signal
corresponds to a superposition of primary and FMR fluxes.

Measurements are done by sweeping a dc magnetic field Hy applied along
the Py strip and perpendicular to h, s, while the generated voltage at the
applied rf field frequency was measured by a spectrum analyzer. In order
to increase the signal-to-noise ratio a frequency locked technique in a 10Hz
spectral bandwidth was employed. All the measurements are done at room
temperature.

14
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Figure 3.2: The measured ac voltage as a function of dc magnetic field for
an applied transverse r f magnetic field frequency 8GHz. The inset shows
the dc magnetic field dependence of the resonant frequency corresponding
to the dip in the measured voltage vs. magnetic field. The squares represent
the experimental data points, while the curve is the fit to the data using
Kittel’s equation.

3.3 Results and discussion

Fig.3.2 shows a typical output signal as a function of the dc magnetic field
(Hyp), taken for an rf field frequency of 8 GHz. Two well defined 20 uV
dips at Hy = +80 mT are observed on top of a few mV background. By
measuring the transmitted power on a chip without the ferromagnetic strip,
it was found that the background signal is unrelated to FMR and can be
further omitted from consideration.

The inset to Fig.3.2 shows the position of the dip for different frequencies
of the r f field as a function of the applied dc field. The squares correspond to
the experimental data, while the solid line is the fit with Kittel’s equation
for the uniform precession mode [20]: wi = v*Hy (Hy + Mg), where v =
gipiio/ R is the gyromagnetic ratio which depends on the g factor and the
Bohr magneton pg. From the fit, the saturation magnetization of the Py
strip was found to be about pgMg = 1 T and the gyromagnetic ratio y=176
GHz/T. These values are consistent with earlier reports [26]. The excellent
fit demonstrates that the magnetization vector of the Py strip was driven
predominantly in the uniform precession mode by the rf field.

When the amplitude of the dip was measured as a function of intensity
of the applied rf field, a linear dependence was found. Thus, the magneti-
zation precession around the direction of an effective field, results in a small
time-dependent component of magnetization perpendicular to the easy axis
M (t) = m, (t) -Z4+my (t) -9+ Mg- 2 and can be described by the linearized
Landau Lifschitz Gilbert (LLG) equation [35]

15
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Figure 3.3: (a-c) The measured voltage across the sample as a function
of the dc magnetic field, around the resonance position for three different
frequencies 4GHz, 8GHz, 14GH z, shown by squares. The line is the fit
to the data using equation (3.3). (d) The real and the imaginary parts of
the susceptibility x(w) calculated using equation (3.2) for r f field frequency
8GHz, v=176 GHz/T, Mg =1 T and a = 0.015.

dM .

E = —")/M X Heff + EM X W (31)

where « is the dimensionless Gilbert damping parameter. We solved

this equation under the assumption that the strip can be treated as a single

domain thin film with a demagnetizing field only in the out-of-plane direc-

tion and the crystal anisotropy field is neglected, thus the effective field can
be written as ﬁeff =[-my, (t)+h(t)] -9+ Ho- 2.

The solution of this equation can be presented as the magnetic suscep-
tibility tensor y;; (w). In our particular case only x,, and x,, components
are required and since only the out-of-plane component of magnetization
can create magnetic flux through the loop, the x,, can be excluded from
consideration while the x,, has a form (further tensor indices are omitted
for simplicity):

() v vHy + iwa
w) =
X TS 2 — w2 — iway (2Hy + M)

(3.2)

In Figure 3.3(d), we plot the real and imaginary parts of magnetic sus-
ceptibility as a function of the dc magnetic field (Hy) for an rf field of
8G H z frequency, with v = 176 GHz/T, ugMs =1 T and o = 0.015. The
imaginary part of x (w) describes the out-of phase with respect ro driving

16



field magnetization precession. This results in the absorption peak observed
in conventional FMR experiments, with a linewidth increasing linearly with
frequency and being a function of «.

Figures 3.3(a-c) show the measured signal around the resonant frequency
for three typical rf frequencies 4,8 and 14 GHz (the squares) from a dif-
ferent sample. We note here that the FMR dip shape changes from a
Lorentzian to a more complex shape as frequency changes. This indicates
a capacitive coupling between the left coplanar strips wave guide and the
Py/Cu pick-up loop, meaning that, there is an extra contribution to the
voltage created by the primary flux. This can also be understood as a phase
shift (¢) between the voltage created by primary flux and the voltage due
to the FMR flux. According to this, the change in voltage observed at res-
onance was fitted as a linear superposition of real and imaginary part of
magnetic susceptibility:

AV(w) = A(w) - (Im[x(w)] - cos() + Re[x(w)]sin(y)) (3-3)

where A(w) depends on the amplitude of the h,; and on the coupling
between the time dependent magnetization and the FMR flux generated by
this. With A(w) and ¢ as fit parameters, all the measured signals can be well
fit. Figures 3.3 (a-c) show the fit results (solid lines) for three frequencies.
This fit allows us to determine the Gilbert damping parameter, which was
found to be a = 0.015. This value is larger than the value o = 0.007
commonly accepted for a thin film of Py [29, 36]. Our higher value may
be due to magnetic inhomogeneities of the strip [37] and applied magnetic
field and hardly due to the spin pumping[16] from the Py strip into the C'u
contacts, as previously measured for a Cu/Py/Cu structure[38, 13].

In summary, we demonstrate the detection of ferromagnetic resonance
uniform mode of a single submicron ferromagnetic strip, embedded in an
on-chip microwave transmission line device. We obtain the Gilbert damping
parameter o = 0.015. To our knowledge, samples used in this study are the
smallest single structures (not spin valve or GMR type) in which the FMR
have been measured by applying an ac magnetic field. We consider that
the present experiment opens a new direction to study new mechanisms for
controlling electron-spin accumulation in the lateral nanodevices at high
frequencies.
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Chapter 4

Detection of FMR assisted
AMR effect

4.1 Aim of the experiment

Among the large variety of experimental techniques which are used for
studying FM materials, such as SQUID magnetometry [39], magneto op-
tical Kerr effect (MOKE) [40], Lorentz force microscopy [41] and magnetic
force microscopy [42], etc., the AMR technique (the anomalous magneto
resistance effect) plays a rather important role since it is based on sensing
electrical transport properties of FM.

It is an experimental fact that the resistance of a ferromagnet depends on
relative orientation between current and magnetization. The phenomeno-
logical dependence is given as follows:

R() = Ry + ARcos0 (4.1)

where change in resistance AR/ Ry is usually of the order of few percents
and # is an angle between current and magnetization.

Even though the mechanism of the AMR effect is not fully understood,
the application of this technique shows a success in studying processes of
magnetization reversal in ferromagnets [43].

The experiment which is presented in this chapter is designed to detect
FMR by means of AMR measurement. We expect that if a dc magnetic field
is applied along the ferromagnetic strip (" direction, Fig.4.1) then magne-
tization precession around Zz" direction at the resonance will create an angle
between current and magnetization resulting in change of the resistance of
the FM strip.

From the magnitude of the AMR effect we expect to estimate cone angle
of the precession, which is important for a spin-pumping experiment (see
further Chapter 5), while typical parameters, which can be obtained in
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Figure 4.1: (a) Schematic picture of the device used in experiment. Rf
magnetic field created by a Coplanar Strip Waveguide (CSW) drives a FMR
resonance in a Py strip. By sending a dc current through the strip the
voltage drop generated by FMR assisted AMR is measured between the
platinum (Pt) contacts V+ and V—. (b) SEM picture of the central part
of the device. External contacts are used for sending current, while voltage
drop is measured between the inner contacts.

FMR experiment (saturation magnetization, Gilbert damping parameter,
anisotropy fields) could be extracted from the shape of measured signal and
dispersion law.

4.2 Device fabrication

The schematic diagram and SEM picture of device used in this experiment
are shown in a Fig.4.1. Py strip is positioned at 2.5 pum distance from
the microwave coplanar strip waveguide (CSW) and connected with the
four platinum (Pt) leads which are used for sending current and detecting
voltage drop across the strip (only two contacts are shown in a Fig.4.1(a)).

First the microwave strip waveguide structure was made on a Si/Si0,
substrate by means of high current e-beam lithography followed by evapo-
ration of 150 nm of gold (Au) layer on top of 10 nm adhesion titanium (7%)
layer.

At the second step, the Py structure was made using a low current e-
beam lithography, followed by evaporation of 40 nm permalloy and further
lift-off resulting in 3 pm long Py strip with a cross-section 40 x 300 nm?.

The Pt leads have been made by means of low current e-beam lithogra-
phy with a lift-off resulting in 80 nm thick Pt contacts.

In order to assure the clean contacts between Py and Pt leads, we use
the Ar ion milling (Kaufmann etching) before the evaporation of platinum,
which removes approximately 2 nm of Py. Platinum leads are evaporated
right after etching without breaking the vacuum in evaporation chamber.

20



15.12

15.08

15.04

15.00

R (Q)

14.96 +

14.92

T T T T T
300 200  -100 0 100 200 300
B (mT)

Figure 4.2: AMR signal for a Py strip. Magnetic field B is applied along
the Z direction (in plane of the strip but perpendicular to the M).

4.3 Measurements and preliminary results

The AMR detection is done by means of four point contact resistance mea-
surements as shown in Fig.4.1. This allows us to eliminate the voltage drop
on the bonding wires.

A standard lock-in technique have been applied to measure a static AMR
effect. Measured AMR curve for the magnetic field applied in-plane but
perpendicular to M is shown in the Fig.4.2. Maximum modification of
resistance, which corresponds to a 90 degrees 6 angle was found to be AR =
0.22 Q vs. Ry = 15.12 Q.

To measure the FMR assisted AMR effect (further AM Rpyr) we adopted
a frequency modulation technique, where frequency of the r f-field was flip-
ping between two values (frign and f,,) separated by 5 GH z interval. The
frequency of modulation was chosen to be the twice frequency of the lock-
in resulting in the lock-in signal Vieek—in = View — Vhigh. This modulation
allows to reduce the background dc offset which is originated mainly from
the nonlinearities in a measurements setup, e.g. high frequency amplifier
and so on.

During the measurements a dc magnetic field (B) is applied along the
strip while frequencies of the driving rf field are shown as fpin and fiow
horizontal lines in Fig.4.3(a).

For any value of the B other than the FMR condition, given by Kittel
equation (Eq.2.10) we are expecting no voltage across the strip since the
AMR response must be almost zero in this case (see vertical dashed lines B
and D in Fig.4.3(a)).

When for one of the frequencies, either fp;gn or fiow, the FMR condition
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Figure 4.3: (a) Schematic illustration of the measurement scheme. Upper
graph shows the FMR dispersion curve and two horizontal lines: f,, and
fnigh, which represents two frequencies of the modulated rf field. When
one of the horizontal line crosses the dispersion curve the FMR assisted
AMR signal is measured, where sign of the signal depends on either it
corresponds to a resonance on a fio, O fhign - bottom half-plane. (b)
Measured AM Rpyrg signal for a lock-in modulated dc current I = +400 pA
and three pairs of frequencies of modulated driving r f field with a frequency
interval 5 GHz

is satisfied a voltage drop will occur along the strip due to the AM Rpyr
effect.

During the experiment, a dc current is sent through the strip, while
frequency modulation and lock-in voltage measurements were set to measure
voltage as Vi, ~— Vj . First resonance condition (at fiow) results in a
negative measured voltage (dip at the vertical dashed line A) since resistance
of the strip is smaller when magnetization and direction of the current are
misaligned, i.e Vipy < Vhign. The second resonance (at fign) leads to a
positive voltage (peak at the vertical dashed line C), since now Vi, > Viign.

Experimentally measured AM Rpy g curves are shown in the Fig.4.3(b)
for different pairs of rf field frequencies, all at dc current I = +400 pA.

Since the AM Ry signals, either peaks or dips, are expected only at
FMR condition, we can find the FMR dispersion law. The inset on the
Fig.4.3(b) shows the frequency of the FMR as a function of the applied
dc magnetic field. Solid squares are experimentally measured points, while
solid line is a fit with Kittel equation for a ferromagnetic strip magnetized
along its easy axis 2"

wi =7 (Ho + Hon + N, M) (Ho + Hyp + N, M) (4.2)

where gyromagnetic ratio v was taken to be 176 GHz/T, in plane de-
magnetizing factor N, = 0.1, out-of plane demagnetizing factor N, = 0.9
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Figure 4.4: (a) Sketch of transformation from elliptical trajectory to
the circular one for a slightly off-resonance condition: tilted ellipse is a
real trajectory, circle is a mean circular trajectory calculated as m =
(IMmin| + |Mimajl)/2. (b) Shapes of the AMRpyp signals as a function
of dc magnetic field for a different frequencies of driving field and two cur-
rents [ = —200, —400 pA. Dots are experimental points. Solid lines are fit
with expression (4.4)

and H,, = 5 mT, which is originated from remanent magnetization of our
magnet.

In order to find how the shape of the measured signals evolves when
magnetic field is swept through the resonance, we treat our system as an
elliptical precession of the magnetization.

Since the FMR frequency is much larger than our data acquisition rate
(lock-in frequency is 17 Hz and lock-in time constant is 1 sec, while FMR
is in a range of GH z frequencies) we assumed that AM Rpy/r signal will be
sensitive to the mean 6 angle over the one precession period. Therefore, 6
angle in equation (4.1) was taken to be 6 = (6, + 6,)/2.

Angle 6 as a function of frequency of driving field and applied magnetic
field can be written via the high frequency magnetic susceptibility functions
(Sec.2.5 of this thesis):

ho

f(w,B) = i

(IxL(w, B)| + [xz(w, B) (4.3)

where hg is an amplitude of the driving rf field, M, is a saturation
magnetization of the Py strip and y; and xr are magnetic susceptibility
functions.

We take modulus of the x since at off-resonance condition, the major and
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Figure 4.5: Fitting AM Rpyrr amplitude (ARIR32) as a function of de current
(I) for different frequencies of rf field. Inset: Amplitude of the rf field
induced by CSW as a function of frequency calculated from the slope of the

ARIRZ(I) lines with AR = 0.22 €.

minor axes of ellipse drawn by the vector of magnetization do not coincide
with x and y axes, as shown at fig.4.4(a).

Using phenomenological expression for the AMR effect (Eq.4.1), under
the small angle approximation with 6 angle dependence on the frequency
and the magnetic field (4.3) we fit shape of the measured signal for few typ-
ical frequencies and dc currents values (Fig.4.4) using the Gilbert damping
parameter o and the amplitude of the rf field as a fitting parameters. The
fitting expression therefore takes a form:

Vamr = ARIO?(hg, a) (4.4)

where AR = 0.22 Q is a maximum of the AM Rpyr effect which would
be observed for a 90 degrees # angle and [ is a dc current sent through the
strip.

On a basis of the fitting procedure we found that Gilbert damping pa-
rameter « is decreasing from 0.012 to 0.009 as the frequency of driving field
increases.

Plot of the value ARIR2 as a function of applied dc current (Fig.4.5)
allows us to find the frequency dependence of the r f field amplitude induced
by CSW. Function hy(f) is shown in the inset of Fig.4.5 and was calculated
from the lines slope, which gives ARhKZ.
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Since the found Gilbert damping parameter is larger than that for bulk
Py (a = 0.007) we can think about number of FMR line broadening mech-
anisms such as nonuniform magnetization dynamics and spin-pumping ef-
fects.

Effects of the nonuniform magnetization dynamics which account for
the inhomogeneity of the magnetic field and the sample predict line width
narrowing with increasing frequency, since for large excitation frequencies,
the dispersion curves for uniform precession and spin wave excitations are
coming closer to each other (Fig.6.3, Chapter 6 of this thesis.)

Effects of the spin pumping (angular momentum loss via the spin trans-
port to an adjacent normal metal) at first glance should lead to the reso-
nance line broadening [13]. However, as will be shown in the Chapter 5,
the loss of angular momentum depends on the cone angle of the precession.
Therefore we assume that we are dealing with an interplay between increas-
ing of momentum loss and decreasing of the delivered r f power to a system
with increasing the frequency of the rf field (inset Fig.4.5).

In summary, we demonstrated the detection of the uniform resonance
precession mode of magnetization of a small ferromagnetic strip using the
effect of FMR assisted AMR. Dispersion law of the measured FMR is in
good agreement with the one predicted by Kittel (Eq.2.10), while analysis
of the shape of the resonance signal allows us to estimate the amplitude of
the rf magnetic field, which is created by a coplanar strip waveguide.

Measured effect of narrowing line width with increasing frequency of
the rf field requires more detailed analysis of both the mechanism of FMR
assisted AMR and dynamics of magnetization precession, including nonlocal
[14] and nonhomogeneous effects (Chapter 6).
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Chapter 5

Charge battery operated by
ferromagnetic resonance

5.1 Electronic transport through FM /NM in-
terface

What makes a ferromagnetic metal to be different from a paramagnetic
metal is the presence of a strong exchange interaction which aligns all the
spins to orient in the same direction. This interaction will be mentioned in
the frame of Heisenberg model (6.6), which can be generally called ”local-
ized model of ferromagnetism”. However, when one starts to think about
electronic transport properties of ferromagnetic metals, the model which is
based on the localized spins is no longer useful. In contrast, spin dependent
electronic transport can be described in the frame of Pauli-Stoner model
of ferromagnetism, which essentially resembles the free electron model [20]
but also takes into account the spin degree of freedom.

The principal idea of the Pauli-Stoner [44] model is that the conduc-
tion band can be split into two subbands, namely spin-up and spin-down
(Fig.5.1). In paramagnetic metals these subbands are degenerate, which
results in equal number of spin-up and spin-down electrons. However, in
ferromagnets the exchange field releases this degeneracy, resulting in a shift
of one subband with respect to another along the energy axis. Since the
density of states at the Fermi level is different for the spin-up and spin-
down subband, the number of conducting spin-up electrons will be larger
than that for spin-down. At the same time, the difference in density of
states for spin subbands also results in a different mobility for spin-up and
spin-down electrons. On average this two effects are usually described by
different spin-up and spin-down conductivity, which is known as ”"two cur-
rent model” and was suggested by T.Valet and A.Fert [4].

The situation starts to be more complicated when transport is con-

27



N(E) N(E)

Figure 5.1: Schematic illustration of spin subbands for the conduction band
of metals. (a) Paramagnetic metal: spin-up and spin-down subbands are
degenerate; (b) Ferromagnetic metal: different concentration and different
density of states for spin-up and spin-down electrons.

sidered through the NM/FM interface. One can imagine the situation
when an electron enters the ferromagnet with spin polarization transverse
to the magnetization of ferromagnet. This is be possible when current
flows through F'M,/NM/F M, structure where magnetizations of two fer-
romagnets (F'M;5) are not collinear. The transport through this type of
interfaces is described by the matrix of interface conductance where the
diagonal elements are spin-up and spin-down interface conductances, while
the off-diagonal elements are the so-called spin mixing conductances ¢g'! and
¢ which physically represent the probability of the transverse spin to flip
either into spin-up or into spin-down state. A comprehensive analysis of
spin mixing conductance in the frame of scattering matrix approach was
made by Brataas et. al. [45] while the calculations using the band structure
analysis were made by Xia et. al. [46]. Furthermore, since the mixing con-
ductance is a property of interface between two materials, it also depends
on their bulk properties [47].

5.2 Parametric spin pumping into NM driven
by FMR

It was shown by Hernando et. al [48] that if the magnetization of FM
follows the resonant precessional dynamics this leads to the modulation of
interface conductance. Later Tserkovnyak et. al. [16] have shown that this
conductance modulation leads to the spin current flow into the NM, or in
easy words to the ”spin pumping”.
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The spin pump current is governed only by the spin mixing conductance
and the dynamics of the FM magnetization:

]_;(p) — hi”m X d_m
4T dt

One can easily find some similarities of this expression with Gilbert
damping term in LLG equation (2.4), which is a signature of the fact that
spin pumping can be considered as an additional channel for damping of
precessional motion, as was indeed observed experimentally [49, 13].

When the spin current is pumped into the NM it builds up the spin ac-
cumulation § close to the FM/NM interface. In principle, the spin pumping
current should have both ac and dc components. However, if the precession
length (I, = \/Dy/27w, where Dy is the electron diffusion coefficient in
NM) is larger than the spin flip length, which is equivalent to w7y < 1 (7s¢
is a spin-flip time), then the ac component of spin current can be neglected
since it will be averaged out by spin-flip processes.

In detail, vanishing of ac component is caused by absorption of the
transverse spin current inside the ferromagnet on the scale of the so-called
transverse spin-coherence length given by:

(5.1)

Ase = 7/ |k — kil (5.2)

For transition metals C'o, F'e, Ni and their alloys, A is at the order of
Fermi wavelength thus is being an atomic length scale [50].

It is worthwhile to note that equation (5.1) gives spin current as a loss
of angular momentum in FM, and since the units for angular momentum
are the same as for A, spin current is measured in the units of energy.

Usually it is convenient to talk about spin accumulation in terms of
difference in spin chemical potentials. The spin accumulation in terms of
angular momentum 5 can be converted into difference in spin chemical po-
tential Y using the density of states in NM:

—

= — 5.3
were N(EF) is an one spin density of states ' at the Fermi level and
is the volume of NM.
Now, in order to rewrite the spin pumping equation (5.1) in terms of
chemical potentials one must divide it by AN (EFr)S2 from a both sides re-

sulting in:

—N —
o) _ diigy hg't . dm

s dt 47Ty mx dt

(5.4)

1One spin density of states is twice smaller than electron density of states since the
spin degeneracy is equal 2.
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Figure 5.2: Schematic illustration of FM/NM interface. The ferromagnet
due to the precessional dynamics pumps spin current into normal metal -
1P this builds-up spin accumulation - pY', which induces back flow spin

current into FM - 1. S(b)

where 7, = hN(Er)Q2 plays the role of the spin injection time into the
NM.

If one knows the dynamics of magnetization in a FM, then spin pump
current can be easily calculated. If magnetization obeys resonant preces-
sional dynamics then spin current can be expressed in terms of high fre-
quency magnetic susceptibility y(w):

[0 hg"

0 = — i () xi () B (55)

where the result is given for precession in a thin ferromagnetic film (See
Chapter 2).

Expression for the spin pumping can be also expressed in terms of the
the resonance frequency and the precession cone angle:

Tl

I» = Mg in2 (5.6)

™

5.3 Spin battery operated by FMR

The pumping of the spin current is not the only process that occurs at the
FM/NM interface. If there will be spin accumulation in NM it will lead to
a back flow spin current into the FM. The balance between spin pump and
spin back flow current will determine both the net spin current which flows
through the interface and the steady state spin accumulation in a NM. This
is known as a ”spin battery” (Fig.5.2).
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The spin battery problem was solved by Brataas et. al. [45], where in
addition to the spin pump current, the back flow spin current and spin
diffusion inside the NM were taken into account.

If the FMR frequency and the spin flip rate in both FM and NM are
smaller than typical spin escape rate (rate of spin injection through the
FM/NM interface 7; '), then it leads to the situation when electrons can go
back and forth through the FM/NM interface without changing their spin
state, resulting in cancellation of the component of the spin current parallel
to the instantaneous magnetization direction m by spin back flow.

Under the above condition the non zero back flow spin current is defined
only by transversal to m component of the spin accumulation:
gt o
= x (5 x 1) (5.7)

ArT;

f(sb):_

The relation between the spin accumulation xY and spin current I, =

1P + 1 is governed by the spin-diffusion equation:
Oy Pris i
=D - — 5.8

ot N 922 Tsf (58)

where the second term accounts for spin relaxation where 7, is a spin
flip time and Dy is a diffusion coefficient in a NM.

Diffusion equation must be solved with the boundary condition given by
the spin current continuity equation at the interface (x = 0):

Dyog, I

SN s (5.9)
Q Ox A

where A is a cross section of the FM/NM interface.

The spin diffusion equation gives the steady state spin accumulation in

terms of the net spin current through the FM/NM interface:

LA
 ADy

fis() exp(—x/Asy) (5.10)

where )\sf = w/DNTsf

If we assume circular magnetization precession, then the spin pump
equations (5.4) and equation for the spin back flow (5.7) together with the
solution for the diffusion equation (5.10) lead to an expression for the spin
accumulation in NM close to the interface (x — 0):

sin? 6

_— 5.11
Osin29+77 ( )

o' =

where € is a cone angle of magnetization precession while 7 is a reduction
factor given by:
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Figure 5.3: Spin accumulation (in units of hw) as a function of precession
cone angle for Py/Cu (solid line) and Py/Al (dashed line) interfaces at room
temperature. The simulation is made in a frame of Brataas et. al. ”spin
battery” model [45]. The dashed line along the horizontal axis corresponds
to negligible spin accumulation at Py/Pt interface.

AT AN (E D
n= AmAN(Ep)h | D (5.12)
ng Tsf

which shows the ratio between spin injection time and effective spin dis-
sipation time which accounts for both spin-flip and spin diffusion processes.

For Py/Cu interface: mixing conductance in the units of number of
conducting channels per area is g'' /A = 1.5 x 101 ¢m =2 [51], spin diffusion
length for C'u at room temperature is As; = 350 nm ? while spin flip time is
Ts = 42 ps [6], one-spin density of states is N(Ep) = 1.74 x 10% eVt m™3
[51] and A = 6.58 x 10716 eV - 5. This results in n = 0.08.

For Py/Al interface: mixing conductance in the units of number of
conducting channels per area is g'*/A = 1.5 x 101 ¢m =2 3, spin diffusion
length for Al at room temperature is As; = 600 nm while spin flip time is
7o = 124 ps [6], one-spin density of states is N(Ep) = 2.4 x 10% eV~ m™3
[51]. This results in n = 0.064.

2Tt appears more easy to find in literature the spin flip length rather then diffusion
coefficient. Therefore we have used relation A\sr = /D7s¢.
3No literature number was found, so assumed to be the same as for Cu.
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For Py/Pt interface: mixing conductance in units of number of con-
ducting channels per area is g'*/A = 1.76 x 10'® ¢m™2 [51], spin diffusion
length for Pt at room temperature is about Ay = 5 nm while spin flip time is
7ss = 10 fs and one-spin density of states is N(Er) = 1.04x10% eVt m™3
[51]. This results in n = 24.4.

The spin accumulation as a function of precession cone angle (Eq.5.11)
is plotted for Py/Cu, Py/Al and Py/Pt interfaces in Fig.(5.3).

Almost negligible spin accumulation in the Pt is a result of the high
rate of spin flip processes which makes the Pt an almost perfect ”spin sink”.
Namely, every injected into the Pt spin will flip its state very fast (e.g. faster
then frequency of the magnetization precession), which can be observed in
FMR experiment as a FMR line broadening caused by the angular momen-
tum loss.

5.4 Charge battery operated by FMR

The spin battery treatment only focuses on the spin transport. However,
spin transport is always accompanied with a charge transport since spins
are carried by electrons. Therefore these two processes must be considered
self-consistently.

When a spin current is flowing through the interface, it can be seen
as two electrons with different spin polarization, where one is entering FM
while another one is leaving. At a first glance this should result in a zero net
charge current. However, in a FM, conductivities for spin-up and spin-down
electrons are different, which means that processes of entering and leaving
FM occur at different rates resulting in charge accumulation close to the
FM/NM interface.

The equation for charge current through the FM/NM interface in general
case can be written as:

€g

Lo === [(pg = mg') + 2007 - i) = 2p (- /)] (5.13)

where ul — ul’ is the difference in electrochemical potential at the in-
terface due to the charge accumulation, % is the spin accumulation in the
FM and /i is the spin accumulation in NM, 17 is a unit vector of instanta-
neous direction of magnetization in FM, g = (¢' + ¢')/2 is the two channel
conductance and p = (g' — g')/(g" + g') is the interface spin polarization.

When there is no bias voltage applied across the interface the steady
state charge current should vanish which allows us to write the built-in
interface voltage as a function of spin accumulation close to the interface:

F N
— 2
BB — 2w @) - - i) (5.14)
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If we assume strong spin relaxation processes in a ferromagnet and high
spin injection rate into NM, then one can neglect spin accumulation in
FM (uf" = 0) and take Brataas solution [45] for spin battery (uY spin
accumulation in NM) resulting in a voltage across the FM/NM interface
given by:

2p v 2p sin? @
V= o Mty = o hu)osin29+n (515)

Thus, for frequency 10" Hz, cone angle of precession § ~ 10 deg and
typical spin polarization for Py/Cu interface p = 0.4 [52], the expected
voltage across the interface is V ~ 1 pV.

It is important to note that the above result is obtained under the
assumption that spin injection time (7;) is much smaller than both spin
flip time (7,7) and elastic electron scattering time(spin diffusion away from
FM/NM interface). Under this approximation, electrons can go back and
forth through the interface without flipping their spin state resulting in the
cancellation of the back flow spin current with polarization collinear with
m. However, this assumption is quite counterintuitive since in order to
have back and forth movement in diffusive systems, a large rate of elastic
scattering processes is necessary which will increase spin diffusion into the
bulk.

The comprehensive model of the charge battery driven by FMR is made
by Xuhui Wang et. al. [17]. In that model the authors accounted for: i)spin
emission (pumping) from FM into NM due to the precession of magneti-
zation, ii) spin back flow due to the spin accumulation in NM, where the
parallel to m component is not neglected, iii) spin diffusion in both FM
and NM region. The set of diffusion equations is solved self-consistently
with boundary conditions given by conservation of the net spin and charge
currents through the FM/NM interface. The final result is given in terms
of voltage across the interface as a function of the precession cone angle,
frequency of the FMR and spin diffusion length both in NM and in FM.

Under the above conditions the back flow spin current equation takes a
form:

Tl
) — g

- N —
_ x iV xm (5.16
S T m X fiy xm (5.16)

F_ N 5 oF o SN o

— + m - —-m - m —

[p (1o — 19 ) + - fi )=

where g = (¢! + ¢')/2 is a two channel conductance and p = (g —
g")/(g" + ¢') is an interface spin polarization.

The difference between this equation and back flow spin current equation

used by Brataas (5.7) is the first term that accounts for the spin current

biased by built-in interface voltage and parallel to 7 spin accumulation in
FM and in NM.
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Figure 5.4: Spin accumulation (in units of hw) as a function of precession
cone angle for Py/Cu interface. Solid line - Brataas ”spin battery” model
[45], Dashed line - Xuhui Wang’s model [17].

Using equation (5.14) the voltage drop across the interface (uf — ud’)/e
can be excluded, which allows us to write back flow spin current only as
a function of spin accumulation in NM and FM. Later, by neglecting spin
accumulation in FM (! = 0) and the terms proportional to p?, the net
spin current through the interface takes form:

ng

—N —
5.17
A7 s X ( )

m X i

s _

= m X m
4T dt 47,

. Tl 2
I—hg L dm g (—».—»N)ﬁ

where the first term is a spin pumping from FM into NM, while the
second and the third are back flow of parallel and perpendicular to m spin
current respectively.

Together with the result (5.10) one finds the spin accumulation in NM
close to the interface:

N hiw sin? 0
Ho = GinZo + (9/g™%) cos? 0 +n

(5.18)

A comparison between the Brataas model [45] and the Xuhui Wang’s
model [17] is shown in Fig.(5.4) for Py/Cu interface with two-channel con-
ductance being g = 1.03 x 10" em ™2 [51].
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Xuhui model shows s significantly reduced spin accumulation since it
also accounts for spin back flow current parallel to m.

In summary, it is useful to point out that the phenomenon of spin trans-
port through the FM /NM interface induced by the magnetization dynamics
in FM cannot be described by the simple model since it must self consis-
tently include the dynamics of magnetization in FM, spin dynamics in NM,
spin and charge transport through the FM/NM interface.

In the presented in this chapter model, we assumed that the spin trans-
port impact on the magnetization dynamics can be accounted as an increase
in the effective Gilbert damping parameter, while the treatment of spin and
charge transport through the interface can be done separately, which allows
us to calculate spin accumulation in NM. The voltage drop across the in-
terface has been calculated as V' = pu? (when spin accumulation in FM is
neglected), where p is a spin polarization of the interface.

Accounting of the spin accumulation in FM will lead to the smaller spin
accumulation in NM and will require the renormalization of the interface

spin polarization in order to account for that transport which will take part
in the bulk part of FM.
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Chapter 6

Nonuniform dynamics of
magnetization

6.1 Magnetization dynamics: energy consid-
eration.

All the considerations of magnetization dynamics presented in the previous
sections were based on the torque equation (2.1) or, in case of damping,
on the LLG equation (2.3), where the magnitude of magnetization M was
taken to be unchanged.

However, the effective magnetic field - ﬁeff, in principle, depends on
magnetization itself. In case of uniformly magnetized film this dependence
comes from demagnetizing field. In case of nonuniform magnetization few
more effects must be taken into account. In order to do that it is convenient
to write the equation of motion in terms of free energy of the ferromagnet
[15] using Hamiltonian formalism of generalized coordinates and momentum

[53]:

A _ M x aniee + 2 x aM (6.1)
oM M, dt

where Uy, is magnetic free energy, which depends on the magnetization
itself. The derivative —OU ./ OM results in an effective magnetic field by
analogy with mechanical gradient of the energy over coordinates, which
results in force.

It is easy to see that equation (6.1) resembles the LLG equation with
only the difference that magnetic field is replaced by its expression in terms
of the free energy. This is indeed an important achievement, since energy
of the ferromagnetic can be easily corrected by introducing new terms, if
necessary.

As an example, lets write an energy of the ferromagnetic thin film:
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Ufree = Uey + Umag + U, (62>

where U,, is an exchange energy, which is assumed to be uniform, U, is
a crystalline anisotropy energy, which in case of polycrystalline permalloy
can be neglected and U,,,4 is a magnetic energy, which can be written as:

Umag = UZ + UM (63)

where Uy = —M H, is the Zeeman energy of the magnetization interac-
tion with an external magnetic field and U, is the demagnetization energy
which is originated from dipole-dipole interaction and depends on the shape
of the ferromagnet. In case of the tangentially magnetized thin film, demag-
netization energy takes the form:

Derivation of Uy, over the M leads to the following expression for the
effective field:

Hfff = - NijM; (6.5)

which is the same as was assumed in section (2.3). In the rest of this
chapter it will be shown that energy consideration allows to account for
nonuiniform precession of magnetization.

6.2 Energy and effective exchange field of
the nonuniformly magnetized ferromag-
net

The uniform precession of vector of magnetization results from precession of
all the magnetic dipole moments (e.g. spins) which constitute macro-spin.
As was suggested by Heisenberg, an energy of exchange interaction between
two spins can be written as:

Uez - —JM1M2 (66)

where J is the exchange integral, while M,; are magnetic moments of the
neighboring spins.

As follows from the Heizenberg equation (6.6), uniform precession of the
magnetization results in uniform exchange energy in a sample, that is why
it has no contribution to the effective field Eq.(6.5).
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Figure 6.1: Schematic representation of different magnetization precession
modes.(a)Uniform precession mode: all the spins are precessing in-phase;
(b) Non-uniform precession mode: constant phase shift between two neigh-
boring spins (spin wave mode).

However, if exchange energy is not homogeneous, it can be written as
a sum of uniform energy U, and nonuniform part U,, which represents in-
creasing in exchange energy due to nonparallel orientation of the neighbor-
ing magnetic moments. The uniform part is given by equation (6.6), while
U, can be written as:

1 oM oM
Uy = 522141)58—%8—% (6.7)

where one can easily recognize the quadratic term in a vectorial Taylor
expansion of the exchange energy in the vicinity of its minima with A,
being the tensor of the expansion coefficients. In an isotropic ferromagnet,
which is the case, when a crystal anisotropy field can be neglected, A, is a
scalar, and the effective field of the exchange interaction can be found easily
just by differentiating equation (6.7) over M resulting in:

H, = AV’M (6.8)

When magnetization M can be written as a sum of constant M, and
spatially-dependent component 77i(7), the effective exchange field will have
only spatial-dependent component. If the spatial dependence of m has a
wavelike form, then the effective field starts to read as:

hy = —Dg*m (6.9)

where D = A/M; and is known as the spin stiffness constant, while ¢ is
a wave vector.
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6.3 Magnetic dipole-dipole interaction in a
nonuniformly magnetized ferromagnet

As was mentioned before, the demagnetizing field has a dipolar nature.
Thus, in the out-of-plane magnetized thin film, demagnetizing field can be
found from Maxwell’s equation:

B = po(H + M) (6.10)

Further continuity of magnetic induction B at the interface requires
magnetic field H inside FM to be equal to — M7i since the magnetization
outside the film is equal to zero. Therefore, for uniformly magnetized film
demagnetizing field equals H, = —M7i, where 7 is a unit vector perpendic-
ular to the surface of the film. From similar consideration we can arrive at
the uniaxial magnetization of the FM strip.

The physical origin of the demagnetizing field is a dipole-dipole inter-
action of non-compensated magnetic dipoles at the surface of the magnetic
sample (surface magnetic charges [54]).

If a ferromagnetic film is non-uniformly magnetized, then it will result in
spatial distribution of surface magnetic charges and dipole-dipole interaction
must be calculated from the first principle using the following expression:

Vs = —5 / ) (7) o (7) (6.11)

where  is a volume of FM film, ¢ (Z) is a magnetic potential which
must be found from Poison equation Ay(Z) = —pp,(Z), with p,,(Z) being
the magnetic charge density which is given by p,.(Z) = — VM (Z).

Equation (6.11) can not be solved in general case, however, for a thin
film with inhomogeneity described by the wave vector ¢ lying in the plane
of the film approximate solution was derived by Herring and Kittel [55]:

Hy = —(Mit)sin®0, (6.12)

where 0, is the angle between the direction of the wave vector and the
magnetization (Fig.6.2).

Similar expression was obtained by Kalinikos and Slavin for a long wave
magnetic charge modulation in a film of finite size [56]:

Hy = —(Mi1) Fyy(gd) (6.13)

where [, is the matrix element of the magnetic dipole interaction which
can be found in related reference, d is a thickness of the film, while p =
0,1,2,... is a quantization number of magnetization waves for the out of
plane component of wave vector ¢ .
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Figure 6.2: Sketch of magnetization wave excitation in a thin ferromagnetic
film of thickness d. Wave vector of excitation lies in plane of the film and
has arbitrary angle with respect to direction of saturation magnetization

defined as 6,.

6.4 Spin wave resonance

Since FMR experiments have been started, in addition to the uniform pre-
cession mode, higher energy modes have been observed [57]. These new
modes have been assigned to the spin-wave excitations (SW).

Dispersion relations for the spin waves can be derived using the analysis
of the nonhomogeneous magnetization presented in the previous section.
Thus, the LLG equation (2.3) must be solved with accounting for an ex-
change field and modified dipole-dipole interaction, however it is easy to see
that without losing generality, a solution can be obtained by simply replac-
ing Hy with Hy+ Dg? and accounting for correction in demagnetizing field
resulting in:

Wiy = V2 (Ho + Dg*)(Hy + Dg* + M,F,,(qd)) (6.14)

The obtained expression describes the resonance frequency of the spin
wave excitation and different from the resonance frequency of the uniform
precession mode given by Kittel equation (3.2), which is a signature of the
contribution from the exchange and modified dipole-dipole interactions.

When ¢ is large enough, the dipole-dipole interaction approaches zero
while the exchange energy becomes larger than Zeeman energy U; = —M H,,
resulting in quadratic SW dispersion law w = vDg? obtained in 1930 by
Bloch [20].

More detailed analysis of the SW dispersion law (6.14) shows that two
types of spin waves can be distinguished. When ¢'is small, namely long wave
excitation, the dipole-dipole interaction dominates over the exchange inter-
action resulting in the so-called dipole dominated surface wave (DDSW)
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Figure 6.3: Dispersion low for the spin waves in Py film with thickness
d = 30 nm and width w = 300 nm. Wave vector is lying in a plane of the
film but orthogonal to the M. Frequencies of the n = 0, 1, 2,3 modes as a
function of magnetic field are shown.

mode or Damon-Eshbach (DE) mode [58]. In the opposite limit, when ¢ is
large, it leads to the exchange spin wave (ESW) mode.

If spin waves are excited in plane of the film with a ¢ vector being
perpendicular to M (7 L M ), then the exchange energy contribution can
be neglected (long wave excitation) resulting in [59, 60]:

1— 6—2(1(1
4

When spin waves are spatially confined, as in a ferromagnetic strip,
then the only allowed ¢ vectors will be nm/w, where w is the width of the
strip, while n is the spin wave quantization number, which is the number
of nodes in a magnetization profile. It is easy to see that if n = 0, then it
is corresponds to the uniform precession mode, which is a signature of the
fact that uniform and nonuniform magnetization dynamics must be treated
on the same basis.

The dispersion law calculated according to (6.15), for the spin waves
(7 L M) in Py film with thickness d = 30 nm and width w = 300 nm are
shown in the Fig.6.3 for few quantization numbers n. For the larger n the
effect of the exchange energy was taken into account since the requirement
qd < 1 will not hold anymore.

Wiy =72 | Ho(Ho + M,) + M? (6.15)
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Chapter 7

Conclusions

The aim of this project was an electrical detection study of the magnetiza-
tion dynamics in Py/NM all metallic heterostructures in the presence of
possible nonlocal spin dependent effects (e.g. spin pumping). The conclu-
sions are summarized below:

e Theoretical studies of the uniform magnetization dynamics was made
in the frame of the Landau-Lifshitz-Gilbert approach. Adopted for
our experimental needs solutions for magnetization dynamics in tan-
gentially magnetized thin ferromagnetic film and ferromagnetic strip
have been obtained.

e Experimental detection of uniform magnetization precession in sub-
micron Py strip has been done by means of magnetic flux pick-up
method (RF detection). We have show the possibility of on-chip ex-
citation and detection of FMR on submicron size scale.

e We performed an FMR assisted AMR experiment (the anomalous
magnetoresistance) and demonstrated applicability of this technique
for magnetization dynamics study (AMR detection). From the shape
of measured signal we were able to estimate the amplitude of the rf
magnetic field created by the coplanar strip waveguide used in the
experiment.

e In both experiments on the FMR we observed an increase of Gilbert
damping parameter o with respect to the value for bulk Py, which
can be a signature of the nonuniform and nonlocal magnetization dy-
namics effects.

e Analysis of the existing spin pumping models has been made, which
allows us to estimate the effect of the FMR driven charge battery at
Py/Cu interface to be of order of 1 uV'.
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e A brief introduction into nonuniform magnetization dynamics is given.
Dispersion law for the lowest dipole-dipole dominated spin wave modes
are calculated in the frame of Damon-Eshbach approach.
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