Laboratory risk classification Within the buildings of the Faculty of Science and Engineering (FSE) the risks in laboratories are identified by a classification system visualized by door signs for this specific purpose. The basic design of these door signs represent: the risk level by a colour, a description of risk aspects - including the corresponding hazard symbols - and the names and functions of people who are responsible. The risk level and its colour are assessed by the criteria in the following table | | Low risk | Medium risk | High risk | |-------------------|---|---|---| | Chemical | - < 25 kg / L
dangerous
chemicals | > 25 kg / L chemicals goods Toxic and Oxidizing chemicals Gas cylinders | Relevant amounts of extremely dangerous chemicals Explosive goods | | Biological | – Group 1
Biological
agents ^{1).} | Group 2 and 3 Biological agents^{1).} ML-I or ML-II GMO activities Animal experimentation rooms (group 1 or 2 infected animals^{1).}) | Group 4 Biological agents^{1).} ML-III GMO activities Animal experimentation rooms (group 3 infected animals^{1).}) | | Physical | Low power equipment with little danger for the direct environment | NMR laboratories Class 3B Laser labs^{2).} Pressure equipment containing > 100 L*bar High voltage equipment (> 1000 V) | High power equipment that, in critical situations, can lead to serious danger for the direct environment. Class 4 laser labs^{2).} | | Radio
activity | | Radionuclide laboratories, levels D and C X-ray laboratories | Radionuclide laboratories,
levels B and A | # 1). Biological hazard group definitions | | Group 1 | Group 2 | Group 3 | Group 4 | |---------------------------------------|---------|---------|---------|---------| | Danger of disease | - | + | + | + | | Danger of spreading | - | - | + | + | | No effective prophylaxis or treatment | - | - | - | + | #### Group 1 biological agents Unlikely to cause human disease #### Group 2 biological agents Can cause human disease and may be a hazard to employees; it is unlikely to spread to the community and there is usually effective prophylaxis or treatment available. #### Group 3 biological agents Can cause severe human disease and may be a serious hazard to employees; it may spread to the community, but there is usually effective prophylaxis or treatment available #### Group 4 biological agents Causes severe human disease and is a serious hazard to employees; it is likely to spread to the community and there is usually no effective prophylaxis or treatment available ### 2). Laser classification | Class 3B | Class 3B is applicable to visible as well as invisible radiation. Direct | | | |----------|--|--|--| | | observation of the beam is always dangerous. Diffuse reflections are | | | | | normally eye-safe, provided that the eye is no closer than 13 cm from the | | | | | reflecting surface and the exposure is less than 10 seconds. The | | | | | maximum power of a class 3B laser is 500 mW. | | | | Class 4 | Class 4 lasers are dangerous. Both direct observation of the beam as well as reflected beam is always dangerous and the probability of injury as a result is high. Damage (fire) to the facilities is also a serious hazard. Diffuse reflections can be dangerous and can result in eye and skin injury or the ignition of flammable material. | | |