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QUANTUM PHASE TRANSITIONS (QPT)

QPT are phase transitions that occur as a function of a 
coupling constant, ξ, called control parameter, that appears 
in the quantum Hamiltonian, H, that describes the system

  1 21H H H      

Associated with phase transitions there are order parameters, 
the expectation values of suitably chosen operators that 
describe the state of the system <O>. 
Introduced in the 1970’s, they have become in recent years of 
great importance in a variety of systems.

[QPT are also called ground state phase transitions § and/or 
zero temperature phase transitions.]

§ R. Gilmore, J. Math. Phys. 20,891 (1979).

0 1 



EXCITED STATE QUANTUM PHASE 
TRANSITIONS (ESQPT)
ESQPT § are phase transitions that occur as a function of 
excitation energy, Ex , for fixed values of the control 
parameter, ξ.

ESQPT and quantum monodromy have been recently 
observed in molecular physics. This observation will also 
be discussed in this talk.

§ M.A. Caprio, P. Cejnar and F. Iachello, Ann. Phys. (N.Y.) 323, 1106 (2008).

ESQPT are intimately connected with quantum monodromy.
In this presentation, this connection will be discussed.



QPT and ESQPT can be conveniently studied within the 
framework of algebraic models. For these models one can 
do both the semi-classical and the quantal analysis, and 
thus study both semi-classical and quantal monodromy.
Also, in many-body systems, finite size scaling (1/N 
expansion) can be easily investigated. The latter point is 
particularly important in applications to finite systems: 
nuclei, molecules, finite polymers, photonic crystals, 
optical lattices, etc.
In this presentation, particular emphasis will be given to 
the semi-classical analysis of algebraic models.

ALGEBRAIC MODELS ¶

¶ F. Iachello, Lie Algebras and Applications, 2nd ed., Springer-Verlag, 
Berlin (2015).



An algebraic model is an expansion of the Hamiltonian and 
other operators in terms of elements, Gαβ, of an algebra (often 
a Lie algebra,              , or a contraction of it). The algebra g is 
called the spectrum generating algebra (SGA).
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An interesting situation occurs when H does not contain all 
elements of g, but only the invariant (Casimir) operators of  a 
chain of algebras ' '' ...g g g  

0 ( ) ' ( ') ...H E C g C g    

called a dynamic symmetry (DS). In this case the energy 
eigenvalues can be written explicitly in terms of quantum 
numbers labeling the representation of g
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†G b b   , 1,...,n  

From † †, , 0b b b b          

one obtains the commutation relations

,G G G G          

which define the real form of g=u(n) [or gl(n)]

It is convenient to write the elements             as bilinear 
products of creation and annihilation operators (Jordan-
Schwinger realization). For bosonic systems

G g 

The basis upon which the elements act is the totally 
symmetric representation,

characterized by the total number of bosons N.
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Fermionic systems can also be treated algebraically in terms 
of bilinear products of anti-commuting operators

spanning the Lie algebra U(m).

†
ij i jG a a , 1,...,i j m

 †,i j ija a     † †, , 0i j i ja a a a 

Mixtures of bosonic and fermionic systems can be treated 
in terms of the realization

†b b 
†

ib a
†
ia b

†
i ja a

spanning the graded Lie algebra (also called superalgebra) u(n/m)
[Fermionic and mixed Bose-Fermi systems will not be 
discussed here]



ALGEBRAIC MODELS (BOSONIC)

U(1) Lipkin: schematic model of many-body systems
U(2) 1-dim vibron: Stretching vibrations of molecules

SO(2)

U(2) 2-dim vibron: Bending vibrations of molecules
U(3)                         

SO(3)

U(3) 3-dim vibron§ : Rotations-vibrations of molecules
U(4)

SO(4)

A list of  algebraic bosonic models extensively investigated is given 
below. These provide a description of many-body problems with        

degrees of freedom1f n 



U(5) Interacting Boson Model (IBM)¶ :
Rotations-vibrations of atomic nuclei

U(6) SU(3)

SO(6)

List (cont.)

A convenient realization of these models is with a scalar boson, 
called s, and another boson bm with                    components. 
The integer or half-integer number                                      is 
called ‘quasi-spin’. The use of both integer and half-integer 
allows one to treat problems in both odd and even dimensions.

2 1f  
1 30, ,1, ,2,...
2 2



¶ F. Iachello and A. Arima, The Interacting Boson Model, Cambridge 
University Press, Cambridge (1987).
§ F. Iachello and R.D. Levine, Algebraic Theory of Molecules, Oxford 
University Press, Oxford, (1995).



GEOMETRY OF ALGEBRAIC MODELS

Geometry can be associated to algebraic models with algebra 
g by constructing appropriate coset spaces, obtained by 
splitting g into

g h p 
subalgebra of g=stability algebra

remainder

For models with u(n) structure the appropriate coset space (g/h) is

( ) / ( 1) (1)u n u n u 

maximal stability algebra

Cartan decomposition

This space is a globally symmetric Riemannian space ¶ with 
dimension 2(n-1)

¶ F. Iachello, Lie Algebras and Applications, Springer, Berlin (2015), Ch. 5.



For bosonic models, the algebra h can be constructed 
by selecting one boson, b1 , and choosing

† †
1 1,h b b b b 

† †
1 1,p b b b b 

, 2,...,n  

2,...,n 



Associated with the Cartan decomposition there are geometric 
variables ηi defined by

expi i i ext
i

p     
 ip p

For bosonic systems

   † † †
1 1 1

1; exp * 0
!

N
N b b b b b

N         

For systems with fixed value of N, it is convenient to introduce 
projective coherent states in terms of projective variables

† †
1

1; 0
!

N
N b b

N      

Extremal state



For algebraic models written in terms of boson operators s, bm
it is convenient to rewrite the coherent state as

† †1; 0
!

N

m m
m

N s b
N

    
 



with normalization
2; | ; 1

N

m
m

N N     
 



The semi-classical Hamiltonian associated with the quantum 
algebraic Hamiltonian is

; ;
( )

; | ;cl

N H N
H

N N
 


 



This Hamiltonian depends on the complex coordinate αm which 
can be split into real coordinates and momenta

( , )m mq p



AN EXAMPLE. BENDING VIBRATIONS OF 
MOLECULES: A 2-DIM PROBLEM

Cartesian boson creation and annihilation operators                    
plus a scalar              conveniently combined into circular bosons

† †, , ,x y x y   
†, 

† †
†

2
x yi 
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2
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 



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QUANTUM DESCRIPTION ¶

¶ F. Iachello and S. Oss, J. Chem. Phys. 104, 6956 (1996).
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Dynamical symmetries
U(2)   SO(2) (I)

U(3)
SO(3)   SO(2) (II)

Labeling of states (quantum numbers)

U(3)   U(2)   SO(2)

[N]        n           

U(3)   SO(3)   SO(2)

[N]          v            

or 0
(n=odd or even)

or N/2
(N=odd or even)



 0, 1,..., ( 2 )N v   

, 2,...,1n n 

, 1,...,1,0n N N 

0,1,..., ( 1) / 2v N 



Algebraic Hamiltonian

 ˆ ˆˆ1H n P
N
      

  21 ˆˆ ˆ ˆ ˆ ˆ( 1)
2

P N N D D D D   
       



Solutions

ξ=0  U(2) symmetry (I)

ξ=1   SO(3) symmetry  (II)

( )
0

( ) 2
0

( )

1( ) '

I

II

E n E n

E v E v v
N





 

     

with

Vibrational behavior

Different quantum number!
A single global quantum number cannot be globally
defined, due to the different dynamic symmetries of the 
two phases.



Energy spectrum for N=40 and 

¶ F. Perez-Bernal and F. Iachello, Phys. Rev. A 77, 032115 (2008)

0

U(2) SO(3)

c

Separatrix

QPT

cEESQPT

CORRELATION DIAGRAM ¶



QUANTUM MONODROMY DIAGRAM

Energy 
spectrum for 
N=40 and 
ξ=0.6

Rotational 
behavior

2
0( )E l E al 

0( )E l E bl 
cu u

cu u
SO(3)
U(2)

[uc value of u (numbering of states) at which the separatrix is crossed]



SEMI-CLASSICAL DESCRIPTION

Coherent state (putting all momenta equal to zero)
[ ]; ,N r 

Coordinates: Cartesian          ; Polar        
Momenta:

Effective potential
[ ]; , [ ]; ,

( , )
[ ]; , | [ ]; ,
N r H N r

V r
N r N r

 


 


 
22 2

2 2

1( ) 1
1 1

r rV r
r r

  
  

        

,x y ,r 
,x yp p ,rp p


r



z

For H given above



Shape of the potential as a function of ξ

Quadratic-quartic potential 2 4( )V r ar br 

called a “sombrero potential” or a “champagne bottle potential” ¶

¶ M.S. Child, J. Phys. A: Math. Gen. 31, 657 (1998).

0  0.2 

0.6  1 



ESQPT AND MONODROMY IN MOLECULES

QPTs and ESQPTs have been recently observed in molecules ¶ . 
Hamiltonian 

  ˆˆ1H n P
N
      

There is in this case only one control parameter and two phases.

U(3) U(2)
SO(3)

Linear (I)
Bent (II)

The phase diagram is a line
U(2) SO(3)

Particularly 
important has 
been the 
observation of 
ESQPT (the 
only known 
example so far).

2nd order

¶ D. Larese and F. Iachello, J. Mol. Struct. 1006, 611 (2011).

Monodromy Diagram of NCNCS



One of the best examples of ESQPT and monodromy is 
provided by the water molecule, H2O, which is bent in the 
ground state and becomes linear at Ex~11,000cm-1.

¶ D. Larese, F. 
Perez-Bernal and 
F. Iachello, J. 
Mol. Struct. 1051, 
310 (2013)



DYNAMICS OF ALGEBRAIC MODELS ¶

Semi-Classical Hamiltonian obtained from the group coherent state

 
2

2 2 2 4
2 2

1 1 51 2
2 2r

pH r p r r
N r

   
  

      
 

2 2
2

2 ( )
2 ( )cl r

pH p V r
m r r

 
   

 



with 1N    2

1( )
1 2

m r
r 


 

2 41 5( )
2

V r r r 
 

where                   (conserved angular momentum) and                   
(bound domain). H can be rewritten as 

2 2p   0 2r 

radial momentum      angular momentum    radial coordinate

¶ O.S. van Roosmalen, Ph.D. Thesis, Rijksuniversiteit Groningen, 1982.
R.L. Hatch and S. Levit, Phys. Rev. C25, 614 (1982).
M.A. Caprio, P. Cejnar and F. Iachello, Ann. Phys. (N.Y), 323, 1106 (2008).

Coordinate dependent mass



SEMI-CLASSICAL SPECTRUM

Semi-classical action

 2

1

( ) 1/2

( )
( ; ) 2 2 ( ) ( )

r E

r E
S E dr m r E V r    

WKB quantization condition

11( ; ) 2
2

S E k N     
 

0,1,...k 

Semi-classical energy levels ( )kE 

Contours of S(ξ;E) in the ξ-E plane

0



Contours calculated numerically ¶

¶ M.A. Caprio et al., Loc. Cit.



PROPERTIES OF THE SEMI-CLASSICAL SPECTRUM

The derivative along a single contour undergoes a

singularity in which                                          at a

critical value

kdE
d

2

20,k kdE d E
d d 

  

ex
c 

The gap between adjacent levels                    vanishes at E=0. kdE
dk

 

The gap can be written as                             or 
12( ) SE

N E
      

1 1( ) 2E N   

Therefore, the period τ becomes infinite at E=0.

So does the level density 1 




Singularities in the derivatives of the classical action

For non-zero angular momentum, the origin is classically 
forbidden. This mitigates the effects just described. The 
phenomena associated with the ESQPT are suppressed at 
sufficiently large       at a given value of N.



EXPLICIT FORM OF THE SPECTRUM NEAR THE 
SINGULARITY ¶

Near the top of the barrier, for E Ø 0, the barrier can be treated 
as an inverted oscillator                       . Also the position 
dependent kinetic term             becomes irrelevant.

2( )V r Ar 
2 2r p

The action can be written as 0
1( ) ( log ...)S E E E E 


    


where 1/22 1/22 (2 )m A     

By imposing the WKB quantization condition and retaining 
only terms linear in E

 log 2 cE E E k k     

one obtains 
2 ( )( )

2 ( )
c

c

k kE k
W e k k

 
 

 


   




¶ M.A. Caprio et al., loc.cit. Lambert function

V(r)
r



For the algebraic Hamiltonian, introducing                                 
one has the semi-classical estimates

   ( ) 1 1 5     

1/2

1/2

2 ( ) ( ) /( , , )
2 ( ) ( ) /

c

c

k k NE N k
W e k k N

 
 

 
 

    

1/2

1/2

2 ( ) /( , , )
2 ( ) ( ) / 1c

NN k
W e k k N

 
 


  

     



SUMMARY AND CONCLUSIONS

QPT, ESQPT and Monodromy have been studied in 
algebraic models of many-body systems both quantally 
and semi-classically.
The case 

U(2)
U(3)

SO(3)

has been shown. Experimental evidence for ESQPT and 
Quantum Monodromy in the bending vibrations of the 
water molecule, H2O, has been presented. 



ESQPT and Monodromy are related to properties of the 
potential. The analysis presented here for U(3) applies 
equally well to all problems of type

U(n-1)
U(n)

SO(n)

which have a 2nd order phase transition U(n-1)-SO(n).
These transitions have been investigated extensively and 
have the same universal behavior. 



U(5) SO(6)

ESQPT

Separatrix

Deformed
Spherical

¶ M.A. Caprio, P. Cejnar and F. Iachello, Ann. Phys. (N.Y.) 323, 1106 (2008).

STRUCTURE OF THE SPECTRUM FOR 2nd ORDER QPT

Exc

QPT
c



For algebraic models that support 1st order transitions, the 
structure of the spectrum and its semi-classical analysis is much 
more complex, since it involves several control parameters and 
several order parameters.
The potential now depends on several coordinates. An example 
is the Interacting Boson Model (IBM) that describes rotations 
and vibrations of a liquid drop with ellipsoidal shape.
This model has two control parameters and three phases

U(5) Spherical
U(6) SU(3) Axially deformed

SO(6) Triaxial unstable

The potential depends on two intrinsic variables (β,γ)
[Quantum monodromy of IBM has some similarities with that of 
ellipsoidal billiards ¶]

¶ H. Waalkens and H.R. Dullin, Ann. Phys. 295, 81 (2002).



PHASE DIAGRAM OF THE INTERACTING BOSON MODEL

Coexistence region

Deformed phase

Spherical phase

U(5) SU(3)

SO(6)

1st order

2nd order



A complete analysis of classical and quantum monodromy 
for algebraic structures that support 1st order transitions is 
currently being done, but it will not be reported here.

This talk is dedicated to the memory of Hilbrand Johannes
Groenewold, whose work on quantum-classical correspondence 
inspired some aspects of the work discussed here on quantum-
classical correspondence in algebraic models, published with 
Groningen affiliation:

A.E.L. Dieperink, O. Scholten and F. Iachello, Kernfysisch 
Versneller Instituut, Rijksuniversiteit Groningen, Classical 
limit of the Interacting Boson Model, Phys. Rev. Lett. 44, 
1747 (1980).


