Data-driven timetable design and passenger flow control optimization in metro lines
Authors: Jinpeng Liang, Mengxue Ren, Kang Huang, Ziyou Gao.
Journal: Transportation Research Part C: Emerging Technologies 166 (2024): 104761.
Abstract
As travel demands in metro systems continue to grow rapidly, the mismatch between passenger demand and metro capacity has become a critical challenge in metro operations. To address this issue, this paper investigates the collaborative optimization of train timetables and station-based passenger flow control under stochastic demand, which aims to minimize the total system cost while ensuring an adequate service level to each station. We formulate the research problem as a stochastic mixed-integer programming model with expected travel time cost constraints for each station and translate it into a multi-objective attainability problem by imposing a target on the objective value. We develop an efficient operation policy that determines the timetable and flow control decisions in response to each demand scenario, satisfying the objective and service level targets in the long term when feasible. We conduct extensive numerical experiments on both synthetic and real-world transit data to evaluate the performance of our approach. The results demonstrate that our approach outperforms the benchmark first-come-first-served policy in terms of efficiency and service fairness under both exogenous and endogenous demand distributions. The improvement achieved by our approach is attributed to the prioritization of short trips over long ones, effectively exploiting the reusable nature of train capacity.
Last modified: | 28 October 2024 09.21 a.m. |
More news
-
16 December 2024
Jouke de Vries: ‘The University will have to be flexible’
2024 was a festive year for the University of Groningen. Jouke de Vries, the chair of the Executive Board, looks back.
-
10 June 2024
Swarming around a skyscraper
Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...