Skip to ContentSkip to Navigation
Research Integrated Research on Energy, Environment and Society | IREES News

Exploring the key technologies needed for the commercialization of electric flying cars: A levelized cost and profitability analysis

28 June 2024

Authors: Xin Sun, Ming Liu, Han Hao, Xiaobo Qu, Kai Wang, Yuping Qian, Xu Hao, Dengye Xun, Jingxuan Geng, Hao Dou, Yunfeng Deng, Shilong Du, Zongwei Liu & Fuquan Zhao

Journal: Energy

Abstract

Flying cars, also known as Vertical Takeoff and Landing aircraft (VTOLs), can significantly improve transportation efficiency, and are expected to play an important role in future transportation. However, the technical requirements to make electric flying cars economically feasible remains insufficiently investigated. In this study, with detailed cost calculation model, the levelized cost and profit of electric flying car operation are estimated. The results show that under the base case (250 Wh/kg battery, baseline cost, battery swapping, no unmanned autonomous driving systems), the levelized cost is $0.61/passenger-km, about one-third higher than on-road taxi cost. Under passenger fare of $1.00/passenger-km, the net present value is $0.46 million, which implies an investment return cycle of 5 years, comparable to the airline industry. Advanced technology deployment can significantly improve profitability. With battery specific energy increased to 400 and 600 Wh/kg, the net present value increases by 60 % and 72 %. The investment return cycle can be reduced to 3 and 2 years, making electric flying car operation a high-profitability industry comparable to ride-sharing. The use of unmanned autonomous driving systems can drive net present value up to 4.2 times that under the base case, implying an investment return cycle of 2 years. Compared with battery swapping, charging as the energy supplementing approach leads to lower operation efficiency, but can be compensated by fast-charging and the reduction of battery capacity. The results suggest that the electric flying car industry could take full advantage of on-road-vehicle battery technology development. Efforts should be made in establishing a complete air-ground joint management system to facilitate unmanned autonomous driving.

Read the article

Last modified:04 July 2024 1.54 p.m.

More news

  • 10 June 2024

    Swarming around a skyscraper

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 24 May 2024

    Lustrum 410 in pictures

    Lustrum 410 in pictures: A photo report of the lustrum 2024

  • 21 May 2024

    Results of 2024 University elections

    The votes have been counted and the results of the University elections are in!