Skip to ContentSkip to Navigation
Research Integrated Research on Energy, Environment and Society | IREES News

The water, land and carbon footprint of conventional and organic dairy systems in the Netherlands and Spain. A case study into the consequences of ecological indicator selection and methodological choices

01 September 2023

Dairy farming systems are multifunctional processes that provide milk but also beef, veal and manure. These outputs provided by dairy farms are important foods for humans but their production require natural resources like water and land, and release emissions to the water and air contributing to climate change. Many studies quantified the environmental performance of dairy farms by using a life cycle assessment (LCA) or environmental footprint calculation. This study provides a better understanding of how different methodological decisions (e.g., the choice of system boundary, GHG metric, allocation procedure for multifunctionality, and multi-environmental indicators) influence the environmental performance calculation. From a footprinting point of view, the water footprints (WFs) (i.e., green, blue and grey), land footprints (LFs) and carbon footprints (CFs) of milk, beef and veal produced in two conventional (Dutch and Spanish) and an organic Dutch dairy system are estimated. Here the system boundaries are expanded so calve systems are included. Next, the use of different indicators is discussed, e.g., green WFs and the GWP100 or GWP20. The Dutch conventional system has relatively small footprints due to high efficiency. Green, blue and grey WFs per kg of milk are 0.62, 0.09 and 0.14 m3. The Spanish system has green, blue and grey WFs per kg of milk of 0.67, 0.15 and 0.09 m3; the Dutch organic system of 0.84, 0.13 and 0.26 m3. The Spanish system has the largest LF and CF, caused by feed import from countries with relatively low yields and transport greenhouse gas emissions. Dutch systems use more locally produced feed. Due to lower efficiency, the organic system has larger footprints than the Dutch conventional system. Expanding system boundaries to include calves results in an 8 to 15% CF increase. Green water dominates total WFs, an aspect excluded in LCA studies. For grey WFs, earlier studies only included nitrogen. However, if also pesticides would be included, results might be less favourable for systems relying on feed crops instead of grasslands. Also, water quality standards influence grey WFs. The study emphasizes that indicator choice influences final results. Indicators like animal welfare, biodiversity or pesticide use give different outcomes which might be more favourable for organic production.

Read the article

Last modified:27 February 2024 10.51 a.m.

More news

  • 10 June 2024

    Swarming around a skyscraper

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 24 May 2024

    Lustrum 410 in pictures

    Lustrum 410 in pictures: A photo report of the lustrum 2024

  • 21 May 2024

    Results of 2024 University elections

    The votes have been counted and the results of the University elections are in!