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1. INTRODUCTION
Diversity maintenance is of central importance to the de-

velopment and application of evolutionary computation meth-
ods and Estimation of Distribution algorithms (Yuan & Gal-
lagher, 2005).

The most common approach to diversity maintenance is
to apply a penalty for individuals contributing insufficiently
to diversity (Holland, 1975; Goldberg & Richardson, 1987).

This can be viewed as an attempt to combine two dis-
tinct objectives into a single scalar value. However, a linear
weighting of two objectives is not necessarily appropriate
and can be difficult to control (Soule, 1998).

In multi-objective optimization, diversity has been used in
combination with multiple other objectives (De Jong, Wat-
son, & Pollack, 2001; De Jong & Pollack, 2003; Toffolo &
Benini, 2003). Here, we propose to use a diversity objec-
tive in combination with a single other objective, namely
the normal fitness function. To the best of our knowledge,
the use of a diversity objective in combination with a single
other objective has so far not been investigated. The results
with multiple other objectives suggest that this approach to
diversity maintenance is very promising.
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1.1 Diversity Maintenance Methods

1.2 The Sharing method
We describe a variant of fitness sharing (Holland, 1975;

Goldberg & Richardson, 1987).
Individual i’s fitness fi is divided by a penalty term 1+βsi,

where si denotes the average similarity of i to the rest of the
population:

f
′

i =
fi

1 + βsi

(1)

where the similarity between two individuals i and j, sij is

sij = max(1−
dij

σ
, 0), and d is the distance between the two

individuals i and j. There is a threshold σ from where indi-
viduals are considered completely different. This similarity
between two individuals is scaled between 0 and 1. The aver-
age similarity s of individual i equals si = 1

n−1

PN

j=1,j!=i sij ,
where n is the number of individuals in the population.

As a comparison method, we employ Fitness uniform se-
lection (2002).

1.3 Multi-Objective Diversity Maintenance
The multi-objective approach to diversity maintenance

was first proposed in work on code growth (De Jong et al.,
2001), where it outperformed basic genetic programming
and found hypothesized minimum size solutions to the 3,
4 and 5-parity problems.

Rather than modifying the fitness function as is being
done by the sharing method, the Multi-Objective Diversity
Maintenance method views the fitness and diversity (mea-
sured as the average distance of an individual to the pop-
ulation) as separate entities. Individuals are selected based
on how many individuals they are dominated by, using best
of four tournament selection.

2. RESULTS
We use two types of problems: two-dimensional problems

(5 De Jong functions (De Jong, 1975) and 10 random land-
scapes) and NK-landscapes ( N=60, K=10). The diversity
maintenance methods are tested using a standard genetic
algorithm. Each method uses an optimized mutation rate
for that method.

The results of testing the algorithm on the two-dimensional
landscapes are given in Table 1. The Tukey-Kramer test was
used to assess significance (Zar, 1999). For the Rosenbrock



Times global
optimum found Baseline FUSS Sharing MODM
with landscape

48.68 4.88 91.20 99.92
Rosenbrock +/- +/- +/- +/-

0.97 0.35 0.47 0.05
100 95.64 100 100

Quartic +/- +/- +/- +/-
0.00 0.37 0.00 0.00
36.84 87.20 78.72 81.52

Foxholes +/- +/- +/- +/-
0.73 0.61 0.83 0.73
3.66 20.19 47.11 72.00

Random +/- +/- +/- +/-
0.16 0.32 0.31 0.38

Table 1: Results for the two-dimensional landscapes.

Baseline FUSS Sharing MODM
Optimal

mutation µ 1.9 2.2 1.2 0.3
rate

Maximal fitness 93.83 91.49 95.03 96.16
+/- standard +/- +/- +/- +/-

error 0.08 0.10 0.09 0.06
Average fitness

in the 74.23 64.45 81.45 72.47
population

Table 2: Results for the NK landscapes.

function for example, we can conclude at a significance level
of α = 0.05 that all methods perform differently, resulting
in the following order:

MODM > Sharing > Baseline > FUSS

For all 2-dimensional problems, Multi-Objective Diver-
sity Maintenance belonged to the best performing methods.
Only in a single case (the Foxholes problem) another method
(FUSS) performed better on average, but this difference was
not statistically significant.
Results with the NK landscape are shown in Table 2 and
Figure 1.

3. CONCLUSIONS
From the results we can conclude that the Multi-Objective

Diversity Maintenance method is most effective to maintain
diversity and to find the best solution. It outperforms the
other frequency-dependent selection methods and the con-
trol algorithm. We conclude that Multi-objective Diversity
Maintenance is an efficient and effective diversity mainte-
nance method that may find general application in genetic
algorithms.

The multi-objective diversity maintenance method not only
searches around the local fitness peaks it has found, but also
maintains individuals that are as different from the rest of
the population as possible. As a result, genetic diversity
is high, and a relatively large part of the search space is
covered.

In future research, we would like to apply the MODM
method to more practical test problems and in coevolution-
ary settings.

Figure 1: The maximal fitness in the population as

a function of generations for the various algorithms

on the NK landscape.
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