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abstract: We present an evolutionarily stable strategy (ESS) model
to analyze selection on seasonal variation in the brood sex ratio, as
observed in several species of raptorial birds. The model is specifically
tailored to the life history of the European kestrel, and it reflects the
maturation time hypothesis, the idea that a seasonal sex ratio trend
has evolved because of sex differences in the dependence of age of
first breeding on date of birth. First we show how to derive a fitness
function in the context of a seasonal environment. Model parameters
are estimated from field data in order to derive quantitative predic-
tions. Since little is known about constraints on sex ratio control in
birds, we analyze three scenarios, each corresponding to a different
strategy set. We consider a model without constraints on sex ratio
control, a model where the sex ratio trend is constrained to be linear,
and a mechanistic model incorporating a plausible mechanism of
sex ratio control in birds. One of the models yields an ESS sex ratio
trend that closely resembles the trend observed in the field. However,
the predictions are very sensitive to the choice of strategy set. More-
over, the selective forces generated by sex differences in maturation
are rather weak. In fact, the mechanistic model shows that seemingly
negligible costs of sex ratio control may be sufficient to overcome
the adaptive value of adjusting the sex ratio.

Keywords: brood sex ratio, age at maturity, seasonality, evolutionary
stability, life history.

The average brood sex ratio (proportion sons) of birds,
when measured at the population level, is typically very
close to 0.5, and the few reports of significant departures
from parity concern deviations that are relatively small in
magnitude (reviews in Clutton-Brock 1986; Gowaty 1990,
1993). This might be interpreted as prima facie evidence
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that the mechanism of chromosomal sex determination is
too rigid to allow birds to adaptively adjust the sex ratio
of their brood. However, while deviations from parity at
the population level seem rare, recent studies show that
there is systematic sex ratio variation within populations
of birds (e.g., Ellegren et al. 1996; Lessells et al. 1996). The
most striking example of such facultative sex ratio ad-
justment has been found in the Seychelles warbler Acro-
cephalus sechellensis (Komdeur et al. 1997), where the sex
ratio varies consistently from one extreme to the other,
overturning the notion that birds cannot adjust the sex
ratio at birth. Another interesting example of facultative
sex ratio adjustment in birds occurs in several species of
raptors, where the brood sex ratio changes systematically
in the course of the breeding season (Dijkstra et al. 1990;
Olsen and Cockburn 1991; Daan et al. 1996). Intriguingly,
despite close phylogenetic relatedness, similar ecology, and
comparable sexual size dimorphism, the directions of these
seasonal sex ratio trends differ between species. Some spe-
cies (European kestrel and lesser kestrel) show a negative
trend; that is, they produce an excess of sons early in the
season and an excess of daughters later in the season. Other
species (sparrowhawk, goshawk, marsh harrier, peregrine
falcon) show the opposite trend, with an overproduction
of daughters early in the season and sons late in the season.
By means of a population genetical simulation model,
Daan et al. (1996) showed that, qualitatively, these differ-
ences might be caused by sex- and species-specific differ-
ences in the relationship between birth date and matu-
ration time (the maturation time hypothesis). Here we
investigate the merit of this hypothesis with an analytical
evolutionarily stable strategy (ESS) approach.

An ESS analysis is performed in three steps (e.g., Parker
and Maynard Smith 1990). First, a strategy set is defined
with respect to the trait of interest. This set comprises a
description of the traits that are phenotypically feasible,
and as such, it reflects constraints within which adaptive
evolution is thought to take place. Second, a fitness func-
tion is required, which relates the “adaptedness” of a phe-
notypic trait in the strategy set to characteristics of the
population and/or the environment. Third, an ESS crite-
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rion is used to characterize those resident strategies that
are evolutionarily stable in that they are immune to in-
vasion attempts of rare mutants.

This recipe may seem quite straightforward, but in the
application to real-world problems a number of difficulties
arise. First, the choice of strategy set and the implemen-
tation of constraints are often rather ad hoc. In fact, the
necessary detailed knowledge of which options are feasible
and which are not is nearly always lacking. Second, in a
life-history context, the fitness concept is not straightfor-
ward but has to be based on population dynamical con-
siderations. Third, the ESS approach is based on the idea
that evolution proceeds via a sequence of temporally un-
coupled gene-substitution events. It is not clear yet to what
extent this simplified picture of evolution captures the
essence of evolution in polymorphic real populations.

In this article, we apply the ESS approach to a life-
history model specifically tailored to the European kestrel.
We show how to derive a fitness function that can be used
in the context of a seasonal environment. We use life-
history parameters estimated from field data to derive
quantitative predictions for the evolutionarily stable sea-
sonal sex ratio trend to be expected on the basis of our
model. Because knowledge of constraints operating on sex
allocation in birds is essentially lacking, we consider a
number of different strategy sets. This allows us to judge
the robustness of the predictions with respect to structural
features of the model. In particular, we investigate a mech-
anistic model in order to assess the selective consequences
of a costly mechanism of sex ratio control.

An Overview of the Method

We summarize here the basic ESS approach in a life-history
context (see Taylor 1996). Consider a monomorphic pop-
ulation in which all individuals exhibit the same pheno-
typic trait (or strategy) . Suppose the population is sub-∗s
divided into a number of discrete “stages” (e.g., females,
subadult males, adult males). Let denote the number∗ni

of individuals in stage i. The number of individuals in
stage i in the next season is then given by

∗′ ∗n 5 a n , (1)Oi ij j
j

where aij is the average number of individuals of stage i
contributed to the next time unit or season by one in-
dividual of stage j (e.g., Caswell 1989). These contributions
should be weighed according to genetic representation. For
example, in a diploid sexual population, offspring typically
carry half a parent’s genes, and contribution of offspring
should then be multiplied by 1/2. More compactly, equa-
tion (1) may be written as

∗′ ∗ ∗n 5 A(s )n . (2)

The notation indicates that the stage transition matrix A
depends on the phenotypic parameter . Under some mild∗s
conditions, the stage distribution will converge to a∗n
stable stage distribution , and the population will grow∗u
at a rate given by the dominant eigenvalue of A.∗l

Let us assume that the resident phenotype is induced∗s
by an allele at some autosomal locus. Suppose a rare∗a
allele a enters the population that, in heterozygous con-
dition, induces the mutant phenotype s. As long as the
population is dominated by homozygous residents, it is
reasonable to assume that mutants only mate with resi-
dents. Homozygous aa individuals can be neglected since
they are extremely rare. Let there be ni mutant individuals
in stage i. The growth dynamics of the mutant sub-
population is of the form

′n 5 b n , (3)Oi ij j
j

where the stage transition matrix depends notB 5 (b )ij

only on the mutant phenotype s but also on the resident
phenotype . Hence, in short,∗s

′ ∗n 5 B(s, s )n. (4)

The asymptotic growth rate of the mutant subpopulation
is given by the dominant eigenvalue of∗l 5 l(s, s )
the matrix . Clearly, and∗ ∗ ∗ ∗B 5 B(s, s ) B(s , s ) 5 A(s )

; that is, a mutant phenotypically indistin-∗ ∗ ∗l(s , s ) 5 l

guishable from the resident must have the same per capita
growth rate as the resident. The mutant phenotype will
spread if it has a higher per capita growth rate than the
resident ( ). Otherwise ( ) it will be driven to∗ ∗l 1 l l ! l

extinction.
As a consequence, a necessary condition for evolution-

ary stability of resident strategy against all invasion at-∗s
tempts by rare mutant strategies is given by∗s ( s

∗ ∗ ∗l(s, s ) ≤ l(s , s ). (5)

Thus, may be viewed as a fitness function for a∗l(s, s )
rare mutant strategy s in a monomorphic population with
resident strategy . ESS values of may then be found∗ ∗s s
by maximizing with respect to the mutant behavior∗l(s, s )
s. In practice, it is often the case that the mutant phenotype
is expressed in only one stage of the life history, say, in
stage 1. In that case, one does not need to maximize the
population parameter . Instead, as we show in ap-∗l(s, s )
pendix A, one may equivalently but more conveniently
maximize the reproductive value of individuals in stagev1

1:
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Table 1: Seasonal dependence of life-history parameters of the kestrel in the
Netherlands (see Dijkstra 1988; Daan et al. 1996) and the observed brood sex
ratio (proportion sons)

Part of breeding season

Regression R21 2 3 4

Standardized date (t) 23/8 21/8 1/8 3/8
Clutch size 5.91 5.49 5.13 4.64 5.29 2 1.67t .997
Survival to age 1 yr .273 .169 .175 .115 .18 2 .20t .843
Recruitment (F) 1.61 .928 .898 .534 .99 2 1.31t .877
Male 1-yr breeding

probability (a) .65 .74 .61 .53 .63 2 .20t .525
Brood sex ratio (j) .536 .517 .515 .457 .51 2 .10t .815
SE (mean j) .016 .018 .017 .029
Adult survival (P) .7

Note: Numerical values that appear in bold were used as parameter values in the ESS model.

1 ∗∗ ∗v (s, s ) 5 v b (s, s ), (6)O i11 i∗l i

where denotes the reproductive value of res-∗ ∗ ∗v 5 v (s , s )i i

ident individuals in stage i, and is the growth rate of∗l

the resident population. The interpretation of equation (6)
is quite transparent: is the contribution of a mu-∗b (s, s )i1

tant individual in stage 1 to stage i in the next season, and
the fitness consequence of this contribution is represented
by the reproductive value of individuals in stage i, dis-∗vi

counted by the per-season population growth rate .∗l

Life History of the Kestrel

To set the stage for a population dynamical model tailored
to the kestrel, we first give an (idealized) account of the
kestrel’s life history. This description is based on a well-
studied population in the Netherlands (see Dijkstra 1988;
Daan et al. 1996), the same population in which a seasonal
sex ratio trend was found (Dijkstra et al. 1990).

Females

Although kestrels have overlapping generations, their life
history is relatively simple. This is especially true for fe-
males, who have no real age structure in their demographic
traits: nearly all females start breeding when they are 1 yr
old, and from this age onward, their yearly survival and
reproductive output are independent of age. A much more
important determinant of a female’s reproductive success
is timing of breeding within the season. As in many birds
with single broods per year (Klomp 1970), clutch size and
first year survival in the kestrel decrease systematically
throughout the season (e.g., Cavé 1968; Dijkstra 1988).
Recruitment (5clutch -year survival) declinessize # first

approximately linearly with laying date t, say, according
to

F(t) 5 r 2 r t. (7)0 1

The estimates of r0 and r1 for the kestrel population in the
Netherlands are given in table 1.

If breeding is uniformly distributed, the average re-
cruitment rate is obtained by integrating over the stan-
dardized season :S 5 [21/2, 1/2]

—
F 5 F(t)dt 5 r . (8)E 0

S

Since in birds females are the heterogametic sex, we assume
that the brood sex ratio j(t) (proportion sons) as a func-
tion of time t in the season is under maternal control. The
average sex ratio among recruits is then given by

1—j 5 F(t)j(t)dt. (9)—EF
S

A female’s probability of survival from one season to the
next is independent of the timing of breeding and is de-
noted by P (empirical estimate in table 1).

Males

The life history of male kestrels differs in one important
aspect from that of females. Only some males (say, a frac-
tion a(t)) manage to start breeding when they are 1 yr
old, depending on their date of birth (t) (we use the terms
“laying date” and “birth date” interchangeably). Nearly all
other males start breeding when they are 2 yr old. The
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Figure 1: Life-cycle graph for kestrels with the mutant strategy j in
a resident population with strategy . The stages 1, 2, and 3 rep-∗j
resent, respectively, females, nonbreeding yearling males, and breed-
ing males. Arrows symbolize the per capita contributions to the
different stages in the next season. The factor 1/2 reflects the degree
of relatedness of parents to their offspring.

probability that a son starts breeding as a yearling, hence-
forth called “maturation rate,” depends in an approxi-
mately linear fashion on laying date:

a(t) 5 a 2 a t. (10)0 1

Regression estimates of a0 and a1 for Dutch kestrels can
be found in table 1.

Averaged over the season, the mean maturation rate is
given by

1—a 5 F(t)j(t)a(t)dt. (11)—EFj
S

Note that the average maturation rate depends on the
seasonal sex ratio trend as specified by j(t). The average
reproductive output of males may differ from that of
females. In fact, if is the average recruitment of a female,

—
F

then the average recruitment of a male is given by ,
—

RF
where

number of breeding females
R 5 , (12)

number of breeding males

the inverse of the operational sex ratio. Male survival to
the next season does not differ from female survival and
is also denoted by P (see table 1).

Population Dynamics

On the basis of the above, a kestrel population in the
breeding season may be decomposed into three life-history
stages: females, nonbreeding 1-yr-old males, and breeding
males. Suppose such a population, monomorphic for a
seasonal sex ratio trend , is invaded by a rare mutant∗j (t)
allele inducing female carriers to produce a sex ratio trend
j(t). Let the vector keep track of the num-n 5 (n , n , n )1 2 3

bers of mutants among, respectively, females, nonbreeding
males, and breeding males. The change of these numbers
from one season to the next is described by the matrix

— —1 1 ∗ ∗— — P 1 (12 j)F 0 (1 2 j )FR2 2

— —1 1∗ ∗ ∗ ∗—— —B(j, j ) 5 (12 a)jF 0 (1 2 a )j FR .2 2 — —1 1 ∗ ∗ ∗——ajF P P 1 a j FR2 2 

(13)

The three stages of mutants and the dynamic transitions
between them can be visualized as depicted in figure 1.
The factor 1/2 in front of terms involving reproduction

reflects the degree of relatedness of parents to their off-
spring. The relative fertility of mutant males is given by
the ratio of females to breeding males in the resident∗R
population. Notice that offspring of mutant males are pro-
duced according to the resident phenotype, since mutant
males effectively only mate with resident females who are
assumed to be in control of the sex ratio.

We have included seasonality in the model by taking
into account the effect of a seasonal sex ratio trend j(t)
on the average sex ratio among recruits and the average—j
male maturation rate . We should caution at this point—a
that this approach is only correct as long as there is no
correlation between the laying dates of parents and off-
spring, an assumption that seems to be corroborated by
empirical evidence in the kestrel (C. Dijkstra, personal
communication).

By setting , the stage transition matrix∗j(t) 5 j (t)
represents the dynamics of the resident∗ ∗ ∗B 5 B(j , j )

population. It may seem that the factor in∗ ∗ ∗R 5 n /n1 3

’s elements makes the resident population dynamics (eq.∗B
[2]) nonlinear, but actually this is not the case because

cancels out of equation (2) and reduces to lower∗ ∗R B
triangular form. It is then straightforward to verify that
the growth rate of this population, which equals the dom-
inant eigenvalue of , is given by∗B
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—∗ ∗—l 5 P 1 (1 2 j )F. (14)

The ratio of breeding females to males in the resident
population can be found from the stable stage distribution

. Technically, is given by the dominant right eigen-∗ ∗u u
vector of . The result is∗B

—∗ ∗ ∗— —u 1 2 j P 1 (1 2 j )F1∗R 5 5 . (15)—∗ ∗ ∗ ∗— ——( )u j P + a (1 2 j )F3

Up to a constant of proportionality, the average repro-
ductive values of the three stages in the resident population
are given by

∗v 5 1,1

∗R P∗v 5 , (16)2 ∗l

∗ ∗v 5 R .3

These are just the elements of a dominant left eigenvector
of .∗B

Now we can write down the reproductive value of a
mutant female with sex ratio trend j(t) in a resident pop-
ulation with sex ratio trend (t):∗j

1 ∗ ∗ ∗∗v (j, j ) 5 (v b 1 v b 1 v b ). (17)11 21 311 1 2 3∗l

By inserting the appropriate elements of equations (13),
(14), and (16) and by removing all terms that do not
contain the mutant strategy j(t), we get the simplified
expression

—∗ ∗— ——1 2 j P + a(1 2 j )F∗ —v (j, j )ù j 2 1 . (18)—1 ∗ ∗ ∗— ——[ ]j P + a (1 2 j )F

At an ESS , is maximized with respect to the∗ ∗j v (j, j )1

mutant strategy j. We shall consider cases where the strat-
egies are characterized by a finite number of pa-j 5 j(t)
rameters, say , where the xi’s correspond tox 5 (x , ..., x )1 k

the switch point of a bang-bang strategy or to the slope
or intercept of a linear sex ratio trend. Therefore, the re-
productive value of a mutant female may be viewed as a
function , and the ESS is found by solving∗v (x, x )1

2­v ­ v1 15 0 and ! 0. (19)F 2 F­x ­x∗ ∗x5x x5x

In our case, the selection differential can be de-­v /­x1

composed into two terms, one representing the effect of
the strategic parameters on the mean sex ratio ,— —j 5 j(x)
the other representing the effect of x on the mean male
maturation rate . In fact, differentiation of equa-— —a 5 a(x)
tion (18) yields

∗— —­v 1 2 2j ­j1 5F ∗ F—­x j ­x∗ ∗x5x x5x

—∗ 2— —(1 2 j ) F ­a
1 . (20)—∗ ∗ F——P + a (1 2 j )F ­x ∗x5x

The first term on the right-hand side represents the di-
rection of selection due to changes in the average sex ratio
caused by variation in x. Clearly, if the population sex
ratio in the resident population is male biased (i.e., ∗—j 1

), then this selection differential is negative if a change1/2
in x leads to an even more male-biased sex ratio, whereas
it is positive if a change in x leads to a more female-biased
sex ratio. The second term on the right-hand side of equa-
tion (20) represents the selection differential due to
changes in the male maturation rate as a result of changes
in x. This selection differential is always positive as long
as a change in x causes a faster maturation rate.

ESS without Constraints

If there are no constraints on sex ratio control, then
the optimal strategy is a bang-bang strategy: produce
only sons in the beginning of the season, up to a point
after which only daughters should be produced. It is
easy to see why this strategy is optimal. Consider any
sex ratio trend that is not a bang-bang strategy. There∗j

exists a unique bang-bang strategy jb, yielding the same
average population sex ratio , and it is obvious∗— —j 5 jb

that jb induces a faster mean male maturation rate
. Therefore, by (20), this bang-bang strategy al-∗— —a 5 ab

ways invades.
The strategy set of a bang-bang strategy is characterized

by the switch-point , the time of the sea-teS 5 [21/2, 1/2]
son after which only daughters are produced. From equa-
tions (9) and (11) we calculate

∗—­j F(t )
5 —F­t F∗t5t

∗—­a F(t ) ∗ —5 [a(t ) 2 a]. (21)—F ∗—­t j F∗t5t
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Figure 2: Curves corresponding to the ESS intercept given a∗b (b )0 1

slope b1 and to the ESS slope given an intercept b0. The kinks∗b (b )1 0

occur where the sex ratio trends become piecewise linear rather than
linear. Since the curves do not cross, an overall ESS ∗ ∗ ∗b 5 (b , b )0 1

does not exist. The arrows indicate the direction of selection, sug-
gesting that and should evolve to ever lower values.∗ ∗b b0 1

Inserting this in (20) and equating to 0 yields the following
necessary condition for an ESS:

—∗ ∗ ∗——­v [a(t ) 2 a ](1 2 j )F1 ∗—∝ (1 2 2j ) 1 5 0. (22)—F ∗ ∗——­t P + a (1 2 j )F∗t5t

Since a(t) is decreasing, the second term on the right-
hand side is always negative. Therefore, the first term on
the right-hand side must be positive, which implies that
in an ESS the average population sex ratio must be female
biased ( ).∗—j ! 1/2

When we substitute equations (7) and (10) for F(t) and
a(t), respectively, solving (22) amounts to finding the roots
of a third-order polynomial in . Inserting the values of∗t

r0, r1, a0, a1, and P, as given in table 1, we obtain the
following result.

Result 1. For the Dutch kestrel population, the optimal
seasonal sex ratio trend is a bang-bang strategy, switching
from producing all-son broods to producing all-daughter
broods at time (i.e., after 34.6% of the season∗t 5 20.154
has passed). The resulting average population sex ratio is
slightly female biased and given by .∗—j 5 0.496

ESS Linear Sex Ratio Trends

The seasonal sex ratio trends observed in raptors (Daan
et al. 1996) are clearly not in line with a bang-bang strategy.
In fact, they are all approximately linear. One might then
formulate the following question. Suppose seasonal sex
ratio trends are constrained to be linear for some unknown
reason. What would then be the evolutionarily stable
trend? Given our lack of knowledge about the constraints
operating in reality, this is the most parsimonious as-
sumption. Of course, the model cannot explain why the
observed trends are linear but only which of the linear
trends is evolutionarily stable.

Let us suppose a linear sex ratio trend over the season
is characterized by . The in-S 5 [21/2, 1/2] b 5 (b , b )0 1

tercept b0 corresponds to the sex ratio at midseason
( ), and b1 corresponds to the slope of the sex ratiot 5 0
trend. The strategy set used by Daan et al. (1996) in their
simulation model is a special case of this, with .b 5 1/20

Because of the obvious constraint , the sex0 ≤ j(t) ≤ 1
ratio trend is actually piecewise linear when b0 and b1 are
too large or too small:

1 if b 1 b t ≥ 10 1

j(t) 5 b 1 b t if 0 ! b 1 b t ! 1 . (23)0 1 0 1{
0 if b 1 b t ≤ 00 1

For extreme values of b0 and b1, j(t) approaches a bang-

bang strategy. Again, by calculating the average sex ratio
(eq. [9]) among recruits and the average male maturation
rate (eq. [11]), and inserting the resulting expressions in
(18), one obtains the reproductive value of av (b , b )0 11

mutant female with strategy b in a resident population
with strategy . An ESS, if it exists, can be found by∗b

investigating the selection differential (eq. [20]).

ESS Intercept

First, we calculated the ESS intercept of a linear sex∗b0

ratio, given a fixed slope b1. The analytical formulas are
not very enlightening, so we refrain from showing them
here. For the parameters in table 1, the result is shown in
figure 2. An interesting special case is obtained for b 51

. This corresponds to the situation in which a female is0
not able to adjust the sex ratio of her brood to the laying
date, but she can influence the average sex ratio which for

equals . It is easy to calculate from (11) that—b 5 0 j 5 b1 0

, independent of b0. The selection dif-—a 5 a 2 a r /(12r )0 1 0 1

ferential (eq. [20]) reduces to
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Figure 3: Comparison of three seasonal sex ratio trends in the kestrel:
the trend observed in the field (Dijkstra et al. 1990), the trend pre-
dicted by the genetic simulation model of Daan et al. (1996), and
the trend predicted by the ESS model, assuming a linear sex ratio
trend with fixed midseason sex ratio .b 5 1/20

∗! 0 iff b 1 1/20∗­v 1 2 2b01 ∗5 5 0 iff b 5 1/2 . (24)0F ∗­b b∗ {0 b 5b 00 0 ∗1 0 iff b ! 1/20

Hence, if the resident average sex ratio is female biased
( ), any mutant can successfully invade,∗ ∗b ! 1/2 b 1 b0 0 0

and, conversely, if the resident average sex ratio is male
biased ( ), any mutant has higher fitness.∗ ∗b 1 1/2 b ! b0 0 0

Therefore, we obtain the following result.
Result 2. If selection only acts on the average brood sex

ratio, an even sex ratio is the unique ESS.

ESS Slope

Next we calculated the ESS slope , given an intercept∗b1

b0. For the parameters in table 1, the result is shown in
figure 2. We focus on one special case where the sex ratio
at midseason is fixed at parity (i.e., ). This con-b 5 1/20

straint is somewhat arbitrary (alternatively, we could have
used the constraint ), but it corresponds precisely—j 5 1/2
to the strategy set used in the simulation model of Daan
et al. (1996), and we want to compare our analytical results
to their simulation results. By equating (20) with 0, one
obtains a quadratic equation in . Since the analytic so-∗b1

lutions inspire little insight, we present numerical solutions
only. For the parameter estimates in table 1, we obtain the
following result.

Result 3. For the Dutch kestrel population, the evolu-
tionarily stable linear sex ratio trend with a fixed even sex
ratio at midseason has the slope . That is, the∗b 5 20.131

proportion of sons is expected to decrease by 0.13 in the
course of the breeding season. The average population sex
ratio is male biased and given by .—j 5 0.514

The result is illustrated in figure 3, where three seasonal
sex ratio trends are depicted: the empirical trend of the
Dutch kestrel population (from Dijkstra et al. 1990), the
trend predicted by the population genetic simulation
model of Daan et al. (1996), and the ESS trend from the
present model. Clearly, the trends predicted by both mod-
els agree very well with each other, and they fit the field
data quite closely.

ESS Intercept and Slope

To complete our analysis of linear sex ratio trends, we
allow both the slope b1 and the intercept b0 to vary. To
find an evolutionarily stable combination ( ), the ESS∗ ∗b , b0 1

condition (eq. [20]) must be solved twice: once for the
intercept , given a slope , and once for the slope ,∗ ∗ ∗b b b0 1 1

given an intercept . It can be shown that both conditions∗b0

cannot be fulfilled at the same time. We do not give an
analytical proof, but the result is illustrated in figure 2,

which shows that the curves defined by the ESS slope
given an intercept and the ESS intercept given a∗ ∗ ∗b b b1 0 0

slope do not intersect in the ( ) plane.∗ ∗ ∗b b , b1 0 1

Result 4. For the model where the sex ratio j(t) depends
linearly on laying date t according to , therej(t) 5 b 1 b t0 1

exists no evolutionarily stable combination ( ).∗ ∗b , b0 1

Even if there exists no ESS, one can infer from the
selection differentials the general direction of evolution,
as illustrated in figure 2. This suggests that and are∗ ∗b b0 1

expected to evolve to ever lower values, eventually leading
to a bang-bang strategy. To test this expectation, we ran
some Monte Carlo simulations corresponding to our
model, where b0 and b1 were coded for by two unlinked
loci with additive interaction of the alleles per locus. At
the start of the simulations, all 800 breeding individuals
were homozygous for the alleles corresponding to b 50

and . The simulation model corresponds to that0.5 b 5 01

of Daan et al. (1996) but also includes mutation. With
probability 0.001 per allele and per generation, alleles mu-
tated to slightly different values (mutation steps drawn at
random from the interval ). Simulations were[20.1, 0.1]
run for 500,000 generations. The results are summarized
in figure 4. Two main conclusions emerge. First, the ex-
pectation based on the geometrical argument in figure 3
is born out, but evolution proceeds very slowly given the
large number of generations and the fairly high mutation
rate. Second, the predictive power of the model is rather
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Figure 4: Results of 100 simulation runs of the genetic model im-
plementing linear sex ratio trends. The two curves from figure 2 are
almost undistinguishable on this scale. Squares represent the pop-
ulation averages of b0 and b1 after every 50,000 generations. These
averages move slowly but monotonically along the lines predicted
by the ESS model. Circles represent the individual simulation out-
comes after 500,000 generations.

limited. Individual simulation runs vary enormously, and
even after 500,000 generations, there are still simulations
with a positive rather than a negative slope. Apparently,
selection is so weak that forces such as drift and mutation
dominate the outcome. This was confirmed by running
the simulations with biased mutations, which had a large
impact on the simulation outcomes (not shown here).

The absence of an ESS in the model could have been
circumvented by choosing a different parametrization, as
pointed out by an anonymous referee. For example, a
piecewise linear sex ratio trend can also be characterized
by the two numbers t0 and t1, where andj(t ) 5 00

. Now bang-bang strategies are feasible within thej(t ) 5 11

model (given by ), and it is easy to derive that thet 5 t0 1

strategy characterized by is the unique∗ ∗t 5 t 5 20.1540 1

ESS (see Result 1). Hence, the parameterization of the
strategies has important consequences for the model out-
come. The parameterization does not admit an(b , b )0 1

ESS since bang-bang strategies are not feasible because they
correspond to infinitely large parameter values. However,
the parameterization has a drawback in that a con-(t , t )0 1

stant sex ratio, independent of laying date, corresponds to
infinitely large parameter values. Hence, the most parsi-
monious ancestral state of a constant sex ratio cannot be
represented by this parameterization. Anyhow, Monte

Carlo simulations again indicate an enormous variation
between simulation runs. If the ESS is reached at all, this
happens only after a very long time.

ESS with Mechanistic Constraints

Up to now, the choice of strategy set was rather ad hoc
and not motivated by mechanistic considerations. Even
though we do not know the mechanisms underlying sex
ratio control in birds, we can make some educated guesses.
Suppose females can identify the sex of an egg after some
point during egg development. It is then conceivable that
female birds might be able to adjust the sex ratio before
laying by discarding developing eggs of the undesired sex.
This is unlikely to be entirely cost free. Even if a female
can resorb eggs and is able to recycle the material without
losses, it takes time to develop an extra egg to replace the
discarded egg. Adjusting the sex ratio by these means may
thus result in a delay in average laying date. Because clutch
size and juvenile survival decline systematically with laying
date in the kestrel (see table 1), as indeed in most other
single-brooded bird species of the temperate zone (Klomp
1970), a delay caused by sex ratio control has direct neg-
ative consequences for offspring fitness.

We shall consider two scenarios of this type of control.
In the first, females may discard any egg of the undesired
sex and every discarded egg results in a delay in laying
date by a fraction d of the breeding season. In the second
scenario, the female can discard only the first eggs, also
resulting in a delay by a fraction d, but once she has started
laying, no eggs between the first laid and the last laid can
be discarded. This scenario was motivated by the obser-
vation that in several species of raptors only the first-laid
egg exhibits a seasonal sex ratio trend (I. Pen, unpublished
data; C. Dijkstra, personal communication).

Finding the ESS sex ratio trend with this type of con-
straint is computationally more cumbersome, and we refer
to appendix B for the technical details of the dynamic
optimization procedure we employed.

Again, life-history parameters of the model are esti-
mated from field data of the Dutch kestrel population
(table 1). The only unspecified parameter in the model is
the average delay d in laying date that results from biasing
the sex ratio by discarding and replacing one egg of the
undesired sex. In kestrels, eggs are normally laid every
other day. Therefore, it is reasonable to assume that the
maximum value of d is obtained if it would take two whole
days to replace a discarded egg by a new one. Since the
range of laying dates of kestrels in our study area is about
50 d, the maximum value of d as a fraction of the breeding
season is about 0.04.

Without any costs ( ), the optimal sex ratio trendd 5 0
for the first scenario is, as expected, a bang-bang strategy:
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Figure 5: Examples of ESS sex ratio trends for the mechanistic model. Lines indicate the ESS trends; open circles represent brood sex ratios
sampled at random ( ) from the ESS trends; dashed lines indicate logistic regression models fitted to the simulated samples. A, B,N 5 300
Examples of the scenario where a female can control the sex ratio of any egg. C, D, Examples of the scenario where a female can only
affect the sex ratio of the first egg. Values of the delay d (as fraction of the breeding season) in laying date caused by resorbing and replacing
an egg containing the undesired sex: A, D, ; B, ; C, .d 5 0.01 d 5 0.013 d 5 0

a switch from producing only sons to producing only
daughters at (see Result 1). For the scenario∗t 5 20.154
in which only the first-laid egg can be biased, the result
is qualitatively the same, except that the magnitude of the
deviation from an even sex ratio is considerably smaller.
For values of , the optimal sex ratio trends have ad 1 0

“bang-bang-bang” shape; first produce more or only sons,
then switch to an even sex ratio, then switch to producing
more or only daughters. However, for values of d 1

, considerably smaller than the maximum ,0.016 d 5 0.04
it never pays to bias the sex ratio at any time in the season.

Result 5. Given the maturation time hypothesis, only
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Figure 6: Sensitivity analysis of the mechanistic model. Each of the
five life-history parameters in the model was varied between 75%
and 125% of their estimated values (see table 1); the other parameters
were kept constant at their estimated value. For the resulting param-
eter combinations, simulated samples were taken from the ESS sex
ratio trend and fitted by a logistic regression curve. The figure shows
the slope parameter d1 of the logistic regression, indicating the steep-
ness of the ESS sex ratio trend. The delay parameter was kept constant
at .d 5 0.0128

if the delay in laying date caused by discarding and re-
placing one egg of the undesired sex is smaller than d ≈

(≈0.8 d) is it adaptive to bias the sex ratio in some0.016
part of the season. The sex ratio trend observed in the
kestrel is fitted best for a delay of .d 5 0.0128

Figure 5 shows some examples of optimal sex ratio
trends for different values of d and for both scenarios of
control. Also shown are typical examples of simulated sam-
ples taken from populations with optimal sex ratio trends.
The results are fitted by logistic regression models. This
serves to demonstrate that even if a bang-bang-bang-like
strategy is in fact real, it will often prove very hard to
distinguish the corresponding empirical data from a more
gradual or even linear trend. In order for an optimal sex
ratio trend to emerge that is statistically significant (p !

in 90% of simulations, tested by log-likelihood ratio.05
test after 1ogistic regression) when 300 broods are sampled
uniformly across the season (roughly the sample size of
the observed trend in the kestrel; see Dijkstra et al. 1990),
d must be smaller than 0.013 (≈2/3 d to produce a new
egg).

Figure 6 shows how the ESS predictions of the mech-
anistic model depend on the five life-history parameters
used for the predictions. We assumed the value of d 5

that fits the kestrel’s sex ratio trend most closely.0.0128
Each parameter was varied between 75% and 125% of its
estimated value (table 1), keeping the other parameters
constant at their estimated value. For an array of parameter
values in this range, the ESS sex ratio trend was calculated
and a logistic regression curve was fitted to a correspond-
ing simulated sample of 2,000 broods. Note that for sex
ratios not too far from 1/2, a logistic regression curve

is indistinguishable from a linear21{1 1 exp [2(d 1 d t)]}0 1

regression line . Since 21b 1 b t (1 1 exp [2y]) 5 1/2 10 1

, the slope parameter of a logistic regression21/4y 1 O(y )
is about four times the slope of a linear regression; that
is, . Figure 6 shows how the slope parameter ofd ≈ 4b1 1

the logistic regression changes with the parameter values.
Apparently, the predictions are most sensitive to changes
in seasonal variation in recruitment. As the relative rate
of decline in recruitment with laying date (measured by
r1/r0) becomes more pronounced, the slope of the sex ratio
trend quickly becomes shallower. This is not surprising,
given that in the model the cost of sex ratio control is
directly proportional to the seasonal decline in
recruitment.

Discussion

The Fitness Concept

In stage structured populations, the fitness concept has to
be based on population dynamical considerations (e.g.,

Charlesworth 1994). An ESS analysis then boils down to
comparing the growth rate of a subpopulation of mutants
with the growth rate of the resident population at large
(e.g., Taylor 1996). Often the analysis focuses on a trait
that is expressed in only one stage of the life history, and
then one may equivalently use reproductive value as a
measure of fitness. In the analysis presented here, we dem-
onstrate how in such a situation the additional complex-
ities arising from a seasonal environment can be dealt with
relatively easily. One simply derives how the seasonal av-
erage of a trait depends on the seasonal distribution of
the trait. The analysis then proceeds as if there were no
seasonality. This approach is justified whenever there is no
between-season correlation in the timing of breeding.

In our analysis, we have assumed that the population
growth rate is density independent; that is, we allowed the
ESS population to have a growth rate different from unity.
For the kestrel, our models yield an ESS growth rate of

, which suggests that the underlying field data were∗l ≈ 1.2
obtained from a source population. On an evolutionary
time scale, no closed population can have a growth rate
that consistently exceeds unity. In principle, we could have
incorporated density dependence in our models, leading
to the additional constraint . However, the specific∗l 5 1
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proximate way in which life-history parameters are af-
fected by density dependence can have important impli-
cations for evolutionary predictions (Mylius and Diek-
mann 1995). The sensitivity analysis summarized in figure
6 shows that different parameters can have quite different
effects on the ESS outcome. It is therefore hard to tell how
density dependence would have affected our results. We
have not included density dependence in our model, since
in the kestrel little is known about the details of population
regulation. Besides, little is known about what constitutes
a good fitness measure in the context of density-regulated
source-sink populations.

The Strategy Set

As our results confirm, the choice of strategy set in evo-
lutionary optimization models may have strong effects on
the model predictions. Unfortunately, progress is ham-
pered by the fact that usually very little, if anything, is
known about the mechanistic constraints acting in real-
world systems. There are two common approaches to deal-
ing with this unfortunate situation. The easiest way out is
simply to assume that no constraints are limiting phe-
notypic expression. The other approach is to adopt some
ad hoc constraints, often also guided by considerations of
simplicity rather than biological realism. In our application
to the seasonal sex ratio trend of the kestrel, we have
approached the problem by considering a suite of different
strategy sets, ranging from a model with no constraints at
all, via simple low-dimensional strategy sets, to more com-
plex strategy sets with explicit incorporation of some plau-
sible mechanisms of sex ratio control. We believe this ap-
proach has several advantages. First of all, it makes it
possible to judge the robustness of model predictions to
changes in the strategy set. For example, for linear sex
ratio trends, we found an ESS when only one parameter
was varied, whereas no ESS exists when the second pa-
rameter was allowed to vary simultaneously. Hence, this
model is apparently not structurally stable in the sense
that addition of one more degree of freedom to the strategy
set alters the outcome completely. Moreover, the outcome
is strongly dependent on the parameterization. Further-
more, the mechanistic strategy set indicated that addition
of a small cost of sex ratio control may alter the structure
of the optimal strategies significantly.

Another advantage of this approach is that it may gen-
erate new, testable predictions. This kind of “inverse op-
timality” method (McFarland 1977) is illustrated by the
mechanistic model, in which we have explicitly included
a plausible mechanism of sex ratio control and associated
costs in terms of a delay in laying date. We found that in
order for the maturation time hypothesis to be a sufficient
explanation for the observed sex ratio trend in the kestrel,

the maximum delay in laying date caused by sex ratio
control must be surprisingly small (!2/3 d).

Our simulated samples taken from populations with
optimal sex ratio trends predicted by the mechanistic
model illustrate another important point: even if a bang-
bang-bang-like optimal strategy with multiple switch
points is in fact real, it may be very hard to verify this
empirically. Figure 5 clearly shows that such strategies can
easily be mistaken for more gradual or even linear trends.

Phenotypic versus Genetic Models

Broadly speaking, there are two rather different approaches
to study adaptive evolution: the dynamic approach of pop-
ulation genetics (e.g., Karlin and Lessard 1986) and the
static ESS approach of evolutionary game theory (Charnov
1982; Maynard Smith 1982). Unfortunately, the two ap-
proaches can lead to different and even contradictory con-
clusions. The question of which approach is more adequate
and whether they can be reconciled is currently a hot topic
in theoretical population biology (Eshel 1996; Hammer-
stein 1996; Weissing 1996). It is interesting that for linear
sex ratio trends with fixed intercept the ESS model pre-
sented here and the population genetic model of Daan et
al. (1996) yield very similar predictions. For the case of
linear sex ratio trends with intercept and slope both var-
iable, we also find such agreement. However, the outcomes
of individual simulation runs of the genetic model are
variable to such an extent that its predictive power is close
to negligible. This is in line with the conclusion we reached
from the mechanistic model: that a very small cost is suf-
ficient to overcome the selective advantage of biasing the
sex ratio. In the genetic model, selection is apparently so
weak that nondeterministic processes such as drift and
mutation may dominate the outcome.

We think it may in general be a worthwhile endeavor
to apply both the ESS and the genetic approach to the
same empirical problem. An advantage of the ESS ap-
proach is that it is easier to investigate the robustness of
predictions with respect to changes in both the number
and the values of model parameters. However, genetic sim-
ulation models give much more insight into the predictive
power of a particular hypothesis because they generate a
distribution of predictions.

Concluding Remarks

As with all studies applying an optimization approach to
a real-world system, we are facing a number of general
problems. Some authors (e.g., Gould and Lewontin 1979)
have claimed that with the benefit of hindsight it is always
possible to construct an optimality model that fits a given
set of observations well. Although we agree to a certain
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extent, this does not render optimality models useless. In
our case, for example, the models can be used to derive
clear-cut a priori predictions for other kestrel populations.
As indicated by the sensitivity analysis depicted in figure
6, the steepness of seasonal sex ratio trends should be
inversely related to the steepness of the seasonal decline
in recruitment. It seems likely that the seasonal decline in
recruitment is steeper for populations at higher latitudes,
and therefore we would expect the steepness of seasonal
sex ratio trends to decrease with latitude. We are currently
collecting sex ratio and life-history data in kestrel popu-
lations at several latitudes to evaluate this expectation. In
line with our expectation, it has been discovered in the
meantime (Smallwood and Smallwood 1998) that a pop-
ulation of American kestrels (Falco sparverius) in Florida
exhibits a seasonal sex ratio trend, whereas a more north-
ern population in Canada lacks a seasonal trend in the
brood sex ratio.

Another obstacle is our general ignorance with respect
to the factors constraining control in natural systems. In
our opinion, the most promising avenue of progress is the
explicit implementation of hypothetical mechanisms of
control. Besides making the costs of control explicit, this
approach has the advantage that it generates new, testable
predictions via the inverse optimality method. In our case,
the mechanistic model has identified how large a cost
would suffice to refute the maturation time hypothesis as
the explanation for the observed sex ratio trend in the
kestrel.
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APPENDIX A

Maximization of Reproductive Value

In this appendix, we verify that maximizing reproductive
value and maximizing population growth rate identify the
same evolutionary equilibria when a phenotypic trait is
expressed in only one stage of the life history.

Recall that a necessary condition for evolutionary sta-
bility of a monomorphic resident population with phe-

notype against invasion attempts by mutants with phe-∗s
notype s is provided by comparing the growth rate of the
mutant subpopulation with the growth rate of the resident
population:

∗ ∗ ∗l(s, s ) ≤ l(s , s ). (A1)

This amounts to maximizing with respect to s.∗l(s, s )
Thus, we need to inspect the derivative of with∗l(s, s )
respect to s. It can be shown (see Taylor 1996) that the
sign of is the same as the sign of­l/­s

­B ­∗ ∗∗ ∗ ∗v u 5 v b (s, s )u , (A2)O ij ji­s ­si,j

where is the row vector of reproductive values of the∗v
different stages in the resident population, which is given
by a dominant left eigenvector of , and rep-∗ ∗ ∗B(s , s ) u
resents the stable stage distribution of the resident pop-
ulation, given by a dominant right eigenvector of

. If the mutant behavior s is restricted to stage 1,∗ ∗B(s , s )
then bij does not depend on s for , and equation (A2)j ( 1
reduces to

­∗∗ ∗u v b (s, s ). (A3)O1 i1i ­si

The zeros of this quantity are identical to the extrema with
respect to s in of∗s 5 s

1 ∗∗ ∗v (s, s ) 5 v b (s, s ). (A4)O i11 i∗l i

This may be viewed as the reproductive value of an in-
dividual displaying mutant behavior in stage 1 during one
time step.

APPENDIX B

Dynamic Optimization Procedure

This appendix contains a description of the procedure
employed to compute the evolutionarily stable sex ratio
trends in the model with mechanistic constraints.

Suppose a female decides at time t in the season to
produce a sex ratio j(t). This will result in a delay in laying
date by an amount Dt, and the adjusted laying date is
given by . The ESS sex ratio trend is then, for′t 5 t 1 Dt
every time t a female maximizes her reproductive value,

′ ′v (t) 5 c(t){[1 2 j(t)]v (t ) 1 j(t)v (t )}, (B1)f d s



396 The American Naturalist

where is the reproductive value of a daughter born′v (t )d

at time t ′, and the reproductive value of a son born′v (t )s

at time t ′.
How do we find the adjusted laying date t ′? Let

denote the sex ratio bias away fromDj(t) 5 Fj(t) 2 1/2F
parity. The probability that an egg contains the “undesired”
sex is 1/2, and resorbing it delays the laying date by a
fraction d of the breeding season. The larger the clutch
size c(t), the more eggs need to be discarded in order to
achieve a given bias Dj(t). Hence, the average delay Dt is
given by

1
Dt 5 dc(t)Dj(t). (B2)

2

How do the offspring reproductive values depend on lay-
ing date? Since the age of first breeding of a daughter is
not influenced by laying date, the relative reproductive
value of a daughter born at time t in the season onlyv (t)d

depends on the first-year survival probability as a function
of birth date t :

v (t) 5 s (t). (B3)0d

The reproductive value of a son born at time t depends
on the probability he will start breeding in the next year,
and it is given by

∗ ∗v (t) 5 s (t){[1 2 a(t)]v 1 a(t)v }. (B4)0s 2 3

Here and are the reproductive values∗ ∗∗ ∗ ∗v 5 R P/l v 5 R2 3

of nonbreeding and breeding males, respectively.
We use the following procedure to find the sex ratio

trend that maximizes for every t (e.g., McNamara∗j (t) v (t)f

et al. 1997). Start with an arbitrary initial sex ratio trend,
say for every t. Compute for this trend thej (t) 5 0.50

seasonal averages and , given by equations (9) and— —j a

(11), respectively. These values are then used to calculate
and , which appear in expression (B4). Then proceed∗ ∗R l

to find for every t the sex ratio that maximizes ,′j (t) v (t)0 f

the best reply to j0(t). Repeat this procedure with an up-
dated sex ratio trend j1(t) that is a weighed average of the
previous sex ratio trend j0(t) and the best reply :′j (t)0

. And so on, until convergence′j (t) 5 (1 2 v)j (t) 1 vj (t)1 0 0

is obtained to a trend that is a best reply to itself and,
therefore, a candidate ESS (strictly speaking, a Nash equi-
librium). To prevent cycling of the iteration process, it
may be necessary to choose a very small value of the
weighing factor v. Our results were obtained using a value
of .v 5 0.02
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