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Abstract

I study a kin selection model of reproductive effort, the allocation of resources to fe-

cundity versus survival, in a patch-structured population. Breeding females remain in

the same patch for life. Offspring have costly partial long-distance dispersal and com-

pete for breeding sites becoming vacant upon the death of previous occupants. The

main result is that the evolutionarily stable reproductive effort decreases as offspring

dispersal rate increases. The result can be understood like this: in a well-mixed pop-

ulation with global competition neither adults nor juveniles compete with relatives,

but in a patch-structured population with dispersal restricted to the juvenile phase,

juveniles experience relatively less competition with relatives than adults, making ju-

veniles relatively more valuable. Since this asymmetry between adults and juveniles

decreases with the dispersal rate, so does the evolutionarily stable level of allocation

to fecundity.
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Lower genetic exchange through dispersal between neighborhoods leads to more

‘viscous’ populations (Hamilton 1964; Taylor 1992; Queller 1994) and a higher degree

of relatedness between locally interacting individuals. Thus, in viscous populations

competition for breeding space or resources tends to be more often between relatives

than in non-viscous populations. Will this affect the outcome of natural selection

on the division of resources between survival and reproduction by an iteroparous

organism?

I study this question here for the following scenario: a population consists of a

large number of patches with N breeding sites or territories per patch. The sites are

occupied by haploid asexually reproducing females, each producing f surviving off-

spring per reproductive season. A fraction d of the offspring engage in long-distance

dispersal, with cost 0 ≤ c ≤ 1. The cost may be due to mortality while migrating, or

result from patch natives being dominant in competition for breeding sites. Subse-

quent to reproduction, females survive with probability S, and if they do they keep

their breeding site. Surviving offspring compete for the (1 − S)N sites that become

vacant in the patch. Offspring that fail to obtain a site perish. Breeding females face

the decision how much effort to invest in their current reproductive attempt versus

alternative actions that may affect their expected future reproductive output. Total

investment or reproductive effort E determines a female’s survival S = S(E), and the

number of surviving offspring f = f(E). I assume that survival of a mother and her

offspring is not directly affected by the neighbors’ effort. This assumption would be

violated when, say, neighbors share a common limited resource pool and higher ef-

fort by one’s neighbors reduces the amount of resources available to oneself. Rather,

reproductive effort of neighbors has an effect only through the number of competing

offspring produced as a result of that effort.

Will selection favor an increase, decrease or no change in reproductive effort as

population viscosity (determined by d) increases? The correct answer is an increase.

The intuition behind this result may be stated as follows: in a well-mixed panmictic

population neither adults nor juveniles compete with relatives, whereas in a patch-

structured population with dispersal restricted to the juvenile phase, juveniles are

less likely to compete with relatives than adults. This makes juveniles relatively more

valuable. This asymmetry in kin competition between adults and juveniles decreases
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as the tendency for juveniles to disperse increases, hence allocation to fecundity by

adults decreases with juvenile dispersal.

The model

I assume that all females in the population are identical in the sense that for a given

reproductive effort E they all have the same expected survival S(E) and fecundity

f(E), independently of age or any other “state” variable. As a result, genes affect-

ing reproductive effort are in demographic equilibrium (randomly distributed with

respect to state) within the span of one season. A female’s direct fitness (as opposed

to inclusive fitness; see Frank 1997) is therefore the number of her direct descendents

(including herself) that obtain a breeding site in the next season. The direct fitness of

a female can be written as the sum of three fitness components. The first component

is the probability she will keep her own site which is given by her survival probability

S(E). The second fitness component is the expected number of breeding sites ob-

tained by her non-dispersing offspring. This is given by the number of non-dispersing

offspring, (1 − d)f(E), multiplied by the expected number of empty breeding sites

per competing offspring. The expected number of empty sites in the focal patch is

given by (1 − S̄)N, where S̄ denotes the average survival of breeding females in the

focal patch. The total number of competing offspring in the focal patch is given by

the total number of non-dispersing offspring produced in the focal patch, N(1− d)f̄ ,
where f̄ denotes the average fecundity of females in the focal patch, plus the expected

number of offspring dispersed from elsewhere, N(1 − c)df∗, where f∗ denotes the

population average fecundity. The number of empty breeding sites per competing

offspring is therefore given by the quotient

p(Ē, E∗) = 1− S̄
(1− d)f̄ + (1− c)df∗ . (1)

Note that N has canceled out of this expression. The second fitness component

can now be written as (1 − d)f(E)p(Ē, E∗). The third fitness component, the num-

ber of breeding sites obtained by a female’s dispersing offspring, is given by the

number of dispersing offspring she produces, df(E), multiplied by the probability

that a dispersing offspring reaches a random patch, (1 − c), multiplied by the ex-
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pected number of empty breeding sites per offspring in a random patch, p(E∗, E∗):

(1− c)df(E)p(E∗, E∗). Summing the three fitness components, we get the following

expression for the direct fitness of a female with reproductive effort E in a patch with

average reproductive effort Ē in a population with average reproductive effort E∗:

W(E, Ē, E∗) = S + (1− d)f
(1− d)f̄ + (1− c)df∗ (1− S̄)+

(1− c)df
(1− cd)f∗ (1− S

∗) . (2)

I assume that S̄ = S(Ē), S∗ = S(E∗), f̄ = f(Ē) and f∗ = f(E∗). This is a good approx-

imation as long as within-patch and between-patch variance in reproductive effort is

small: E[g(x)] ≈ g(x̄) + 1
2Var(x)g

′′(x̄), a prime denoting differentiation. This as-

sumption is consistent with the usual assumptions of an ESS analysis, in which the

evolutionary stability of a monomorphic population is assessed by repeatedly intro-

ducing rare mutants with behavior deviating slightly from the monomorphic popula-

tion behavior.

The equilibrium condition

Let R be the relatedness between a breeding female and all breeding females (includ-

ing herself) in the same patch. The direct fitness equilibrium condition (Taylor and

Frank 1996; Frank 1997) for an evolutionarily stable reproductive effort E∗ is given

by

(∂W
∂E

+ R∂W
∂Ē

)
E=Ē=E∗

= 0 . (3)

This condition expresses the notion that a small change in a female’s reproductive

effort affects her fitness via two pathways. The first partial derivative measures the

effect of a change in a female’s own reproductive effort on her fitness. It is given by

∂W
∂E

= S′ + (1− S)f
′

f
(4)

In a panmictic population (with R = 0), the evolutionarily stable reproductive effort

is a root of this equation. In a viscous population, however, a change in a female’s

reproductive effort will be accompanied by a correlated change in the reproductive

effort of other females in the patch. Local interactions cause the change in reproduc-

tive effort of other females in the patch to affect the fitness of the focal female. This
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is measured by the second term in (3):

R
∂W
∂Ē

= −Rh
(
S′ + h(1− S)f

′

f

)
, (5)

where

h = 1− d
1− cd (6)

represents the probability that an individual in the patch was born there. The equilib-

rium condition (3) as a whole can now be written as(
S′ + (1− S)f

′

f

)
= Rh

(
S′ + h(1− S)f

′

f

)
. (7)

Main result: informal proof

The equilibrium condition (7) contains information about how the evolutionarily sta-

ble reproductive effort E∗ covaries with the other life history parameters in the model.

I am specifically interested in the relationship between E∗and the offspring dispersal

rate d. In this section I present an informal analysis, relying on visual inspection of

the equilibrium condition and an educated guess. The next section contains a more

formal analysis.

Note from (7) that both sides must be negative. Since 0 < h < 1 and fecundity

increases with effort (f ′ > 0), the factor between parentheses on the right is smaller

than the left-hand side. Because 0 < Rh < 1 it follows that both sides of (7) are neg-

ative. In particular, ∂W/∂E < 0. From this we can conclude that the evolutionarily

stable reproductive effort in a viscous population is larger than in a panmictic popu-

lation, because in a panmictic population we must have ∂W/∂E = 0 and ∂2W/∂E2 < 0.

Since a viscous population approaches a panmictic population as the dispersal rate

increases, it seems safe to conjecture

Main result. The evolutionarily stable reproductive effort decreases with offspring dis-

persal rate.
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The reason why the stable reproductive effort is higher in a viscous population

than in a panmictic population is because in a viscous population offspring are rela-

tively more valuable. This can be seen by writing the equilibrium condition (7) in a

slightly different way:

(1− Rh) S′

1− S + (1− Rh
2)
f ′

f
= 0 . (8)

The factor 1/(1 − S) can be interpreted as the reproductive value of a surviving fe-

male relative to a reproductive value 1/f of a surviving offspring. The first term in

(8) is then seen to represent the marginal cost of reproduction S′/(1 − S) in units of

female’s reproductive value times the weighing factor (1− Rh). Similarly, the second

term in (8) represents the marginal benefit of reproduction f ′/f in units of offspring

reproductive value times a different weighing factor, (1−Rh2). The offspring’s weigh-
ing factor is larger than the female’s weighing factor because the probability of being

native to the patch h < 1. Hence, in a viscous population (R > 0), offspring have a

relatively higher value than in a panmictic population (R = 0). The weighing factors

can be interpreted as probabilities of not competing with individuals carrying identi-

cal genes at the effort-determining locus. Rh is the probability that genes in a random

offspring competing for a given female’s breeding site are identical by descent to the

female’s genes. Hence, 1− Rh is the probability that this is not so. Likewise, 1− Rh2
is the probability that genes in two offspring competing for the same site are not

identical by descent.

Main result: formal proof

The informal analysis in the last section may have yielded some intuitition as to why

reproductive effort in a viscous population is likely to be higher than in a panmictic

population, but it remains to be shown that reproductive effort decreases in a mono-

tone fashion with the dispersal rate. That is, it remains to be shown that dE∗/dd < 0.

The sign of dE∗/dd can be calculated by implicitly differentiating the equilibrium con-

dition (7) with respect to d. Writing G(E∗, d) for the left-hand side of (7), we obtain

dE∗

dd
= − ∂G/∂d

∂G/∂E∗
. (9)
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In order for E∗ to be convergence stable (Taylor 1996), the denominator of the right-

hand side must be negative. Convergence stability means that in a population close to

E∗, selection favors those mutants that are even closer to E∗. Hence, assuming that

E∗ is convergence stable, the sign of dE∗/dd must equal the sign of ∂G/∂d. Since the

first term between parentheses in (7) is independent of d, the sign of ∂G/∂d equals

the sign of

− ∂
∂d
Rh

(
S′ + h(1− S)f

′

f

)

= −∂R
∂d
h
(
S′ + h(1− S)f

′

f

)
− Rdh

dd

(
S′ + 2h(1− S)f

′

f

)
(10)

>From the equilibrium condition (7) we get that

S′ = −(1− S)f
′

f
1− Rh2
1− Rh . (11)

Plugging into (10), dividing by the positive factor (1−S)f ′/f and multiplying by 1−Rh
yields

h(1− h)∂R
∂d

+ R
(
1− 2h+ Rh2

) dh
dd

. (12)

It is difficult to see what the sign of this expression is without an exact expression for

∂R/∂d. In the appendix it shown that

R = 1

N − (N − 1)hh(1−S)+2S1+S
, (13)

and we get

∂R
∂d

= 2
dh
dd
R2(N − 1)

h(1− S)+ S
1+ S . (14)

Substitution in (12) yields the greatly simplified expression

dh
dd

(
1− h

1+ (N − 1)(1− h)
)2

, (15)

hence dE∗/dd has the same sign as

dh
dd

= − 1− c
(1− cd)2 < 0 , (16)

which completes the proof of the main result.
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Figure 1: Optimal reproductive effort in relation to dispersal rate for several patch

sizes N. Functions and parameters: adult survival S(E) = 0.9(1 − E)1/2; offspring
survival f(E) = E1/2; cost of dispersal c = 0.5.

Example and simulation results

Figure 1 depicts a specific example of the relationship between optimal reproductive

effort and dispersal rate. Optimal reproductive effort decreases with dispersal rate,

but the relationship becomes weaker quite quickly as patch size increases. In order

to check the analytical results, I implemented the patch-structured population in an

individual-based computer simulation model, where reproductive effort was coded for

by a single haploid locus. The simulated population consisted of 500 patches, genes

mutating to slightly different ‘values’ with a rate of 10−3 per generation. Relatedness

was estimated as the least squares linear regression coefficient between genetic values

of two random females drawn with replacement from each patch. Figure 2 shows that

the analytical predictions of relatedness and reproductive effort closely match the
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Figure 2: Optimal reproductive effort (solid line) and local relatedness (dashed line) in

relation to patch size N, predicted by analytical model. Adult and offspring survival

and cost of dispersal as in figure 1, dispersal d = 0.5. Dots represent outcomes of

simulation model, error bars representing standard deviations over 10 simulations;

solid dots reproductive effort, open dots relatedness.

averages of 10 simulation runs after 5000 generations.

Discussion

I have shown here that in a patch-structured population, given a trade-off between

survival and fecundity, the optimal allocation of resources to fecundity decreases with

offspring dispersal rate. The kin selection approach adopted here clarifies the nature

of the selective forces that affect reproductive effort in a geographically structured

population. If a proportion of the offspring engages in long-distance dispersal to

a random patch, the rest remaining at the native patch, then two related offspring

are less likely to compete for the same breeding site as an offspring and a related
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adult. Hence, lower adult survival reduces local competition between relatives more

strongly than the increase in local competition caused by higher offspring survival.

Since reproductive effort has opposite effects on adult and offspring survival, higher

local relatedness selects for higher reproductive effort.

The problem studied here resembles that of sex allocation in a patch-structured

population with differential dispersal between the sexes (Bulmer and Taylor 1980).

Compared to optimal sex allocation in a population with global competition, the opti-

mal sex allocation in a patch-structured population is more biased towards the most

dispersing sex because this tends to reduce local competition between relatives. In the

model of this paper, offspring are analogous to the most dispersing sex and breed-

ing females analogous to the least dispersing sex. Clearly, both examples are special

cases of the general expectation that when competition is partially local, an individual

should allocate relatively fewer resources to the type of offspring (a surviving female

can be regarded as a kind of offspring of herself) with the higher amount of local

competition.

Ronce and Olivieri (1997) recently published a paper on the evolution of reproduc-

tive effort in a metapopulation. The biology and population structure in their models

matches my model exactly, except that they included the possibility of local extinc-

tions and ecological succession. By means of analytical ESS models they conclude

that, contrary to the results presented here, if all breeding sites in a patch are always

occupied, then dispersal has no effect on the evolutionary stable reproductive effort.

The reason for the discrepancy seems to be that their analytical models ignore the

effect of local relatedness, or equivalently, assume effectively infinitely large patches.

By means of a simulation model, Ronce and Olivieri conclude that their analytical

models tend to underestimate the stable level of reproductive effort and in their sim-

ulations reproductive effort decreases with dispersal rate, consistent with my results.

But as I have shown here, as long as subpopulations are not too large, a negative rela-

tionship between dispersal rate and reproductive effort does not necessarily require

‘local demographic disequilibrium’ due to local extinctions or ecological succession,

but may also be attributed to variation in the degree of local relatedness. It might

be interesting to combine the kin selection approach adopted here with the extinc-

tion/succession approach of Ronce and Olivieri to investigate the relative importance
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of the different processes for optimal reproductive effort.

An important assumption in the model presented here is that surviving adults

always keep their breeding site. In other words, density dependence is assumed to

affect juveniles only. This is a common assumption in models of life history evolu-

tion (e.g. Charnov 1993), but it may affect the outcome of the analysis (Mylius and

Diekmann 1995). The assumption seems reasonable for most plant species, but for

animals its validity is probably less general.

Is there any empirical evidence that could be used to test the predictions of the

model? A potential problem is that many confounding variables might affect selection

on both dispersal and reproductive effort. This could lead to spurious correlations

between the two traits. For example, in populations inhabiting highly disturbed areas

with high mortality rates, there may be selection for higher fecundity and a higher

dispersal rate at the same time. A comparison between populations in disturbed and

undisturbed areas would reveal a positive correlation between reproductive effort and

dispersal, contradicting the prediction of this paper. This is in fact found in many

plant species (see Ronce and Olivieri 1997 and refs therein), although there are also

studies on plants that support the prediction (Venable and Levin 1983). A better way

to test the logic of my results might be to use laboratory metapopulations of, say,

Drosophilids, with known genetic variation for fecundity, where dispersal patterns

are under full control of the experimentator.
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Appendix. Calculation of relatedness

The relatedness between an “actor” performing an action and a “recipient” affected

by the action is usually defined as the regression coefficient of recipient phenotype

on actor genotype (Michod and Hamilton 1980). The coefficient may be non-zero due

to common genealogy, but also due to external factors such as a shared environment

(Frank 1997). However, for the present purpose I exclude the latter possibility.

Recall that R actually measures the average relatedness between a female and all

other females in the patch, including herself. However, I find it easier to work with

the relatedness between different females, denoted by Rd. First I derive Rd and then

compute R as

R = 1
N
+ N − 1

N
Rd . (A1)

The first term on the right is the probability that by drawing two females at random

and with replacement from the same patch, the same female is drawn twice, weighed

by a relatedness of unity. The second term on the right is the probability that two

different females are drawn, weighed by an average relatedness of Rd, which is a

solution of the recurrence relation

Rd = S2Rd + 2S(1− S)h
(
1
N
+ N − 1

N
Rd
)
+ (1− S)2h2

(
1
N
+ N − 1

N
Rd
)
. (A2)

The first term on the right is the probability that two random females are both sur-

viving breeders from the previous season, weighed by their relatedness. The second

term represents the probability 2S(1 − S) that a surviving breeder and a surviving

offspring are drawn, multiplied by the probability h that the offspring is native to the

patch, multiplied by the probability that the offspring is either an offspring of the

survivor (probability 1/N, relatedness 1) or not (probability 1− 1/N, relatedness Rd).

The final term is the probability (1−S)2 that two surviving offspring are drawn, times

the probability h2 that both are native to the patch, times the probability that they are

sibs (probability 1/N, relatedness 1) or not (probability 1− 1/N, relatedness Rd). The

calculations yield

R = 1

N − (N − 1)hh(1−S)+2S1+S
. (A3)


