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Due to the lack of sufficient data and appropriate ecological information parameterizing

predictive population dynamical models usually is a difficult task. The approach proposed in

this study is meant to overcome this problem by using detailed individual-based simulations

to generate artificial data. With short-term data samples, the models to be investigated

can be parameterized and their predictions be compared. The flexibility of individual-based

simulations as experimental tools also facilitates the evaluation and comparison of different

(aggregated) model types. The presented approach is a step towards unifying models of
Individual-based model

Incidence function model

Grid-based

different complexity. As an example we applied it to two metapopulation models of insect

species in a highly fragmented landscape: the well-known incidence function model with

a patch-based representation of space and a grid-based analogue. The models are tested

with respect to their data requirement and recommendations for a better data sampling

are derived.

© 2006 Elsevier B.V. All rights reserved.

structure into account but still are analytically tractable.
1. Introduction

Mathematical and computer-based models have become
essential tools in understanding spatial population dynamics
(Tilman and Kareiva, 1997; Bascompte and Solé, 1998; Czárán,
1998; Turchin, 1998). In the context of population viability anal-
ysis (Boyce, 1992), using highly specific model types such as
spatially explicit or individual-based models (IBMs) (DeAngelis
and Gross, 1992; Grimm, 1999; Grimm and Railsback, 2005)

can be cumbersome and requires detailed biological informa-
tion that is often lacking or difficult to obtain. On the other
hand, more aggregated models of population dynamics in

∗ Corresponding author. Present address: University of Alberta, Centre f
Mathematical & Statistical Sciences, Edmonton Alberta T6G 2G1, Cana

E-mail address: fhilker@uos.de (F.M. Hilker).
0304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2005.06.011
fragmented habitats such as structured metapopulation mod-
els (e.g., Gyllenberg et al., 1997; Casagrandi and Gatto, 1999;
Hanski and Ovaskainen, 2000; Ovaskainen and Hanski, 2001;
Frank and Wissel, 2002) or the classic metapopulation model
(Levins, 1969) neglect certain aspects which might be of special
interest.

Spatially realistic metapopulation models (Hanski, 1999,
2001) seem to be promising tools, since they take spatial
or Mathematical Biology, Department of
da.

Within spatially realistic metapopulation theory, stochastic
patch occupancy models (SPOMs) (Gosselin, 1998; Moilanen,
1999; Sjögren-Gulve and Hanski, 2000; Moilanen, 2004) are of

mailto:fhilker@uos.de
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Fig. 1 – Approach to (i) parameterize the patch-matrix
model (PMM) and the grid-based model (GBM) with
snapshot samples from artificial long-term data generated
by an individual-based model (IBM), (ii) evaluate the
e c o l o g i c a l m o d e l l i

pecial interest, because they simply classify habitat patches
s either occupied or empty. They thus can be parameterized
ith patterns of presence–absence data, and are generally
arameter-sparse. In this study, we investigate the incidence
unction model (IFM) of Hanski (1994), which has become

standard tool in quantitative metapopulation studies and
as been applied to a broad range of animal species (Hanski,
001, and references therein). However, there is some scep-
icism regarding the assumptions of quasi-equilibrium and
nvironmental stochasticity or just the simplicity (Harrison,
991, 1994; Thomas, 1994; Poethke et al., 1996; ter Braak et al.,
998; Gosselin, 1999; Moilanen, 2000).

Though the IFM in principle is easy to parameterize, in
ractice there are often situations where data are missing.
he aim of this paper is to outline a conceptual approach how

his lack of sufficient data can be overcome. The idea is as
ollows: instead of relying on rare real-world data, extensive
rtificial data-sets are generated by individual-based simula-
ions. With samples from these artificial data, the aggregated

odel to be investigated can be parameterized. Moreover, the
alidation, evaluation and comparison of models is possible.
he model predictions can be validated by checking their
onsistency with the underlying IBM-dynamics. IBMs allow
o simulate various experimental settings (cf. Peck, 2004).
hus, the model can be evaluated regarding certain ques-

ions. In this paper, the data requirement of the IFM shall
e investigated. Furthermore, different model types can be
ompared.

This shall exemplarily be demonstrated by means of a
rid-based analogue of the IFM, which has been proposed
y Settele (1998). There are two reasons to study this model.
irst, there is an increasing need of grid-based model types
ince data on species distributions are often available in a
rid-based format, which additionally can easily be handled,
or example with Geographic Information Systems. Second,
he underpinning of the grid-based approach is questionable.
y projecting the landscape onto a grid, populations inhab-

ting an area greater than a single cell are subdivided, thus
elaxing the assumption of panmixia for local populations. Or,
ontrariwise, two or more small habitats might be subsumed
n one cell.

The framework of model parameterization, evaluation and
omparison is closely related with an approach suggested by
anski (1999), which he motivates as follows (p. 76): “In prac-

ice, unfortunately, the problem often is that there are not
nough data to test model predictions rigorously. An alter-
ative approach that has not been sufficiently explored is
o generate simulated data with some sufficiently complex

odel, to obtain a realistic sample from the simulated data,
nd to arrange contests among competing models based on
uch data”.

The outline of this paper is as follows. In the next sec-
ion, the three models used in this study are described, i.e.,
he IBM, the incidence function model (henceforth referred
o as patch-matrix model, PMM) and the grid-based model
GBM). The IBM exemplarily simulates various grasshopper

pecies (but could be applied to any other similar insect
pecies) in a highly fragmented landscape. Both the PMM
nd the GBM are parameterized with snapshot data which
re short-term samples of the IBM. The model output are
accuracy of the parameter estimators and (iii) compare the
PMM and GBM themselves.

estimators of the species-specific process parameters, which
shall be briefly referred to as estimators, describing the dis-
persal, colonization and survival abilities. On the other hand,
the real values of the species-specific process parameters are
directly extracted from the long-term IBM-data. This facili-
tates the evaluation and validation of the predicted estima-
tors, cf. Fig. 1. The PMM and GBM are compared by assess-
ing the accuracy with which their predictions match the real
values. The more specific questions in mind are (i) whether
increasing the amount of input data improves the model accu-
racy and (ii) whether the grid-based approach is suitable at
all. Finally, the results are discussed and related to similar
work.

2. Model descriptions

2.1. Individual-based model (IBM)

The IBM simulates a generic grasshopper species with non-
overlapping generations. Three different species will be sim-
ulated in varying habitat landscapes. The details of these sce-
narios will be described in Section 3. Here, the general assump-
tions of the IBM are given.

The time step used in the model is one day. Fig. 2 shows

the life cycle of an individual and the influence of both demo-
graphic and environmental stochasticity. Three life stages are
distinguished: eggs, nymphs and adults. The hatching of eggs
occurs stochastically between the middle and the end of May.
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Fig. 2 – Life cycle of the simulated species.

A nymph passes to the adult stage after 20 days. The adults
die after another 60 days.

Two adults mate if they are in the vicinity of mateRadius of
each other. After mating, the female creates a number of eggs
that is assumed to be Poisson-distributed with a fixed mean
� = 10. Ovipositing an egg requires an appropriate site, e.g., a
soil gap or a blade of grass. A female detects all ovipositing
sites in a distance of nestRadius. Once one egg is oviposited,
the site is declared as ‘depleted’ until it becomes availabale
again in the next year.

The movement of the nymphs and adults is modelled in
the following way: all individuals are characterized by their
actual position in space and by their movement direction. The
spatial coordinates of consecutive days are calculated from an
individual’s movement distance and turning angle which are
drawn (daily) from uniform distributions (cf. Kindvall, 1999;
Hein et al., 2004). There are two kinds of movement: when the
individual is within a habitat patch, the movement distances
are short and the turning angles vary widely, whereas in the
matrix the movement is characterized by longer distances and
few turns.

Environmental fluctuations are modelled by local catastro-
phes. They may occur each year up to three times with a prob-
ability of 0.67 each, and affect a circular area of up to one third
of the total landscape. In this area, each egg is destroyed with
a probability of 0.67 and the ovipositing sites are declared as
non-available. The catastrophes may overlap, thus increasing
the local extinction risk. Other combinations of the number
of catastrophes, their area and their harm are possible, but
this choice turned out to obey a good mixture between locally
correlated environmental fluctuations and global stochastic-
ity (due to overlapping local catastrophes). Other values may
result in frequent metapopulation extinction or panmictic
behaviour.

At the beginning of a simulation, 90,000 individuals with a
1:1 sex-ratio are generated and placed randomly in the land-
scape. The ovipositing sites are randomly distributed in the
habitat patches, with 400 sites per ha of habitat.

Note that due to individuals having difficulties in finding
mating partners at low densities an Allee effect can appear in
the IBM. This effect is especially pronounced during coloniza-
tion of an empty patch.

The basic “ingredients” of the IBM are extinction of subpop-

ulations in local habitats (due to demographic stochasticity,
catastrophes, Allee effect), exchange of individuals between
habitats (movement) and recolonization of habitat patches
(environmental stochasticity). During the creation of the IBM,
1 9 9 (2006) 476–485

some of these mechanisms were varied in their intensity (or
even skipped), but it turned out that all of them are necessary
to generate persistent metapopulation dynamics, cf. also the
first results in Section 3.

2.2. Patch-matrix model (PMM)

The PMM was described in detail by Hanski (1994, 1999).
Belonging to the class of SPOMs, it is based on presence–
absence data of a species in a set of habitats. These snapshot
data are collected over a single or (better) several generations
and assumed to represent the quasi-equilibrium of metapop-
ulation dynamics. The modelling objective is to fit the inci-
dence function to the observed snapshot data, thus obtaining
estimators of the species-specific process parameters. Once
these parameters are known, the model can be used to pre-
dict habitat-specific colonization and extinction probabilites
for a particular habitat configuration. In this way occupan-
cies, transient dynamics and regional population persistence
can be predicted.

If habitat i is extinct (respectively occupied), it has the prob-
ability Ci (respectively Ei) of becoming recolonized (respec-
tively extinct) at the next time step. These transitions are
assumed to occur at random for each habitat. The probabil-
ity that habitat i will be occupied tends toward the stationary
probability

Ji = Ci

Ci + Ei(1 − Ci)
, (1)

which assumes a quasi-steady state of metapopulation
dynamics conditional on metapopulation persistence. Ji is
usually known as incidence. In Eq. (1), the rescue effect (Brown
and Kodric-Brown, 1977) is included. Mathematically, patch
occupancy models are time homogeneous, discrete time first
order finite state Markov chains.

In the PMM, the extinction probability Ei is assumed to vary
with the patch area Ai (in ha):

Ei = min{e0A−x
i

, 1}, (2)

where e0 and x are extinction parameters. Next, the coloniza-
tion probability Ci is approximated by the number of immi-
grants Mi =

∑
j�=i

Mij arriving at patch i:

Ci = M2
i

M2
i

+ y′2 , (3)

where y′ is a colonization parameter and

Mij = pjAj exp(−˛dij) (4)

describes the number of immigrants from patch j to i. dij is
the distance between patches i and j (in km), pj gives the
observed incidence (relative frequency of patch occupancy) of
the patches around patch i, and ˛ (km−1) is a migration param-
eter.

Finally, one can reduce the number of parameters by set-
ting e′ = e y′2 and incorporate C and E in Eq. (1). Note that

only patches with Ai > A0 := e0 are considered due to the
minimum-operator in the extinction probability. A0 is the criti-
cal patch area, below which the extinction probability Ei equals
unity.
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2.4. Extraction of real values

The output of the PMM and GBM are estimators of the species-
specific process parameters which are compared with the
“real” values. Those can directly be extracted from the IBM-
data, in a way which is described in this subsection.

The idea is as follows: the mechanistic equations of the
PMM and GBM are simply fitted to the recorded IBM-data. In
other words, the migration parameters ˛ and � are obtained
in nonlinear least-square fits of Eqs. (4) and (7) against dij and
rij, respectively, to the number of immigrants Mij, the colo-
nization parameters y′ and � in fitting Eqs. (3) and (6) against
the respective Mi to the colonization probabilities as well as
the extinction parameters e0, x and � in fitting Eqs. (2) and (5)
against Ai and Ki, respectively, to the extinction probabilities.
Therefore, obviously (i) the number of immigrants as well as
(ii) the extinction and colonization probabilities are needed.

The number of immigrants is approximated by tracking in
the IBM all female individuals which oviposit their first egg in
a different habitat than the one in which they mated.

The extinction and colonization probabilities are obtained
by means of a simple maximum-likelihood estimation. Let
Nkl

i
denote the number of state transitions of patch (or grid

cell, respectively) i with state being either 1 = occupied or
0 = empty. Then a likelihood function for the recorded transi-
tions can be formulated:

Pi = (1 − Ci)
N00

i C
N01

i
i

(Ei − EiCi)
N10

i (1 − Ei + EiCi)
N11

i

Now, Ci and Ei are approximated by maximizing the log-
transformed Pi, which has been done with the Fletcher-Reeves
conjugate gradient algorithm (Ueberhuber, 1997). Note that
the case N01 = N10 = N11 = 0 is excluded, as with these values
one of the partial derivatives would vanish. When fitting the
number of immigrants, one has to be careful since the right-
hand sides of Eqs. (4)and (7) might be much smaller. Here, they
have been scaled by multiplying with the value of maximum
observed immigrants over all patches. Alternatively, one could
use a second fitting parameter.

3. Results

The IBM has been parameterized for three different grasshop-
per species mimicking low mobility (species LM), intermediate
mobility (IM) and high mobility (HM). The respective parame-
ter values are given in Table 1.

Table 1 – IBM-parameter values for the species with low,
intermediate and high mobility (LM, IM and HM,
respectively)

Species LM IM HM

nestRadius (m) 4 5 6
e c o l o g i c a l m o d e l l i

The initially unknown set of species-specific process
arameters � = (˛, e′, x) is estimated by fitting Eq. (1) to the
napshot data. Using maximum pseudo-likelihood regression,
he difference between the snapshot data pi (approximating
he quasi-steady state of the metapopulation) and the model-
redicted incidences Ji is minimized. In the pseudo-likelihood
unction, a binomial distribution of the species’ occurences
s assumed. Dealing with an optimization problem, the per-

utation term can be neglected and the likelihood be log-
ransformed, thus yielding

(�) =
∑

i

(pi log(Ji) + (1 − pi) log(1 − Ji)).

or maximization of this function, the simulated anneal-
ng algorithm is used, because it is able to escape from
ocal optima in the search space and find global solutions
Kirkpatrick et al., 1983; Bounds, 1987; Moilanen et al., 1998).
he PMM-parameters e0 and y′ can be separated from e′ by
efining A0 as the area of the smallest occupied habitat patch

e0 = Ax
0, y′ =

√
e′/e0).

.3. Grid-based model (GBM)

he GBM has been suggested by Settele (1998). It resembles
he PMM in being a SPOM based on a regression model. Space
s represented by a grid, the cells of which may either be occu-
ied by local populations or not. Since all cells are equally
ized, the carrying capacity cannot be approximated by the
rea as in the PMM. Instead, the extinction probability is
escribed by

i = exp(−�Ki), (5)

here � is an extinction parameter and Ki is a measure
or the carrying capacity. Ki is set to the relative frequency

i with which the cell is occupied in the snapshot data.
n the case that a cell is always unoccupied and one can
xclude that it is hostile to the species, one assigns the min-
mum capacity of all cells which have been occupied at least
nce.

The colonization probability is along the line of the PMM

i = M2
i

M2
i

+ �2
, (6)

ith � being a colonization parameter. The mean number of
mmigrants is approximated by Mi =

∑
j�=i

Mij with

ij = pjKj exp(−�rij)ϕij. (7)

he term pjKj is a measure for the population abundance in
ell j. The fraction of individuals dispersing the Euclidean dis-
ance rij (km) between the source cell j and the target cell
is determined by the migration parameter � (km−1). ϕij =

rctan(D/(2rij))/� is the maximum angle of a circle-segment
rom the midpoint of the source cell to the ends of the target
ell, cf. Fig. 1. D is the cell length and throughout this paper
et to 100 m, corresponding to the size of the smallest habitat.
he set of species-specific parameters � = (�, �, �) is obtained
nalogously to the PMM.

mateRadius (m) 8 8 10
patchDist (m) 10 15 20
matrixDist (m) 70 140 210

patchTurn and matrixTurn have constantly been set to 1.57 and 0.785,
respectively.
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Table 2 – Landscape characteristics of the habitat
configurations

Habitat configuration S N− N+ A− A+

Number of patches 100 84 115 100 100
Mean patch area (ha) 1.48 1.48 1.45 1.29 1.65
Standard deviation of

patch area (ha)
1.60 1.65 1.55 1.39 1.80

Fraction of habitat (%) 2.05 1.72 2.30 1.78 2.28
Minimum patch area (ha) 0.2 0.2 0.2 0.2 0.2
Maximum patch area (ha) 6.76 6.76 6.76 6.2 7.88
S: standard, N−/N+ and A−/A+: decreased/increased number of
patches and mean area as well as standard deviation, respectively.

Fig. 3 – Mean estimators based on two consecutive snapshot yea
Details are explained within the text.
1 9 9 (2006) 476–485

Parameter values have been chosen to guarantee metapop-
ulation dynamics, i.e., they have been tuned by means of
pattern-oriented modelling (Grimm et al., 1996; Wiegand et
al., 2003) to let the model show typical metapopulation-like
behaviour indicated by a significant but not too high turnover
rate and a quasi-equilibrium of the fraction of occupied habi-
tats. For the species LM, IM and HM, the turnover rates are
0.015, 0.08 and 0.112, the mean fractions of occupied habitats
are 0.32, 0.62 and 0.75 and the mean of the standard devia-
tions from these mean occupancies are 0.034, 0.042 and 0.033,
respectively.
The standard habitat configuration (S) exhibits similar fea-
tures (number of patches, minimum/maximim, mean and
standard deviation of patch area, ratio habitat to matrix) as
an exemplarily chosen habitat network of the bush cricket

rs. The dotted vertical lines indicate the standard variance.
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latycleis albopunctata in the Naturpark Hassberge in North-
rn Bavaria, Germany. The real-world landscape comprises
.5 km × 12.92 km. The fraction of habitat is 1.4%. For mod-
lling purposes, a quadratic artificial landscape (8.5 km ×
.5 km) has been assumed. Four other configurations have
een created by decreasing/increasing the number of patches

N− and N+, respectively) as well as mean and standard devi-
tion of patch area (A− and A+, respectively), cf. Table 2.

Each species has been simulated in all five habitat con-
gurations with ten replicates. In each replicate, the spatial
rrangement of the patches has been chosen stochastically.
n the following, we shall focus on the species-specific

rocess parameters. Since they are assumed to be habitat-

ndependent, they are averaged over all habitat configurations
nd replicates. The simulations have been run 200 years to
et the metapopulation dynamics reach quasi-equilibrium.

Fig. 4 – Estimators based on five
9 9 (2006) 476–485 481

Then, further 400 years are simulated in which the data are
recorded and analyzed.

The impact of the amount of parameterization data is
investigated in three steps. The PMM and GBM are param-
eterized (i) with two consecutive snapshot years, (ii) with
five consecutive snapshot years and (iii) with five consecu-
tive snapshot years as well as the given migration parameter.
Two and five snapshot years correspond to typical field studies
(cf. Moilanen, 2000). In order to be independent of the partic-
ular years, the samples have been collected five times in each
replicate beginning in different years. The migration param-
eter can be determined by indepedent additional data from,

e.g., mark-recapture or genetic studies (Hanski, 1999, 2001 and
references therein). The real values are extracted with the
methods described in Subsection 2.4 from the full IBM-data
set comprising 400 years. In the following Figs. 3–5, the result-

consecutive snapshot years.
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para
Fig. 5 – Estimators based on given migration

ing mean estimators (averaged over all habitat configurations,
replicates and collected snapshot samples) as well as their
standard deviation are plotted against the mean real values.

First, Fig. 3 shows the estimators obtained from two snap-
shot years plotted against the real values. Regarding the PMM,
the migration parameter ˛ is estimated well, and the esti-
mator of x conincides well with its real value, too. There are
substantial biases, however, for y′ and e0. Regarding the GBM,
the migration parameter � and the extinction parameter � are
well estimated for species LM, whereas there are under- and
overestimations, respectively, for species IM and HM. The esti-

mators of the colonization parameter � are far too large—for
all three species more than two and a half orders of magnitude.
The variance, however, is small. Thus, a systematic error can
be suspected.
meters and five consecutive snapshot years.

Second, both the PMM and GBM are parameterized with five
snapshot years. The results are shown in Fig. 4. The accuracy of
the PMM-estimators remains nearly the same. While the vari-
ance decreases for species IM and HM, there is an increased
scattering for species LM. The estimators of � in the GBM still
deviate more than two orders of magnitude. Regarding these
biases, the minor changes in the other estimators do not seem
to be of relevance.

Third, the real values of the migration parameters are
assumed to be given. Thus, the search space for the estima-
tion problem reduces from three to two dimensions for both

the PMM and the GBM (recall that two of the PMM parameters
are combined during the estimation problem). The results are
shown in Fig. 5. Now, the estimators of both x and y′ are close to
identity with the real value. The accuracy of the e0-estimators



n g 1

f
t
i
a
i
w
v

4

T
b
H
o
T
M
a
c

d
t
f
r
a
b
y
w
s
w
t

i
o
o
a
s

o
g
a
P

p
p
n
r
p
t

b
t
t
a
T
s
p
(
1

e c o l o g i c a l m o d e l l i

or species LM is of a similar quality, but for species IM and HM
here are deviations of one order of magnitude. In the GBM, �

s still estimated well. The enormous biases of � vanish. The
ccuracy is quite good, especially for species IM and HM. There
s a substantial variance in the �-estimators of species LM,

hile for all other parameters and species the estimators are
ery precise.

. Discussion and conclusions

esting the quality of model predictions usually turns out to
e a problem, because little or even no data are available.
ighly specific models can be used to generate simulated data,
r, in other words, to substitute missing “real-world” data.
his allows not only the parameterization of single models.
oreover, these models can be investigated regarding certain

spects, for example the data requirement, or they can be
ompared with other modelling approaches.

In this study, an IBM of three grasshopper species in five
ifferent landscapes has been used to generate extensive long-
erm data sets. With several sampled snapshot years, two dif-
erent SPOMs have been parameterized, which differ in their
epresentation of space: once the classic patch-matrix model
nd once a grid-based approach. The parameterization has
een done (i) with two snapshot years, (ii) with five snapshot
ears and (iii) with additionally given migration parameter,
hich can be estimated from independent data. The species-

pecific process parameter estimators have been compared
ith the real values which have been directly determined from

he full amount of long-term IBM-data.
Surprisingly, the accuracy of the PMM predictions is not

mproved when the parameterization is done with five instead
f two snapshot years. In both cases, there are misestimations
f one order of magnitude. This bias is reduced, if addition-
lly the migration parameter is known, but there still remain
evere underestimations at least for two species.

The predictions of the GBM partly deviate more than two
rders of magnitude. Only if the model is parameterized with
iven migration parameter, the GBM proves to be relatively
ccurate. In fact, the biases are less prominent than in the
MM, but there is some more variance in the predictions.

As a consequence, one cannot blindly rely on the model
redictions. Each one should be taken very cautiously. While
arameters can be estimated well for some species, this does
ot hold for others. As a kind of rule of thumb, however, the
esults suggest to put emphasis on determining the migration
arameters ˛ and � from additional, independent data rather
han collecting more snapshot years.

Furthermore, the presented results indicate another possi-
ility to improve the estimation. Since the estimated migra-
ion parameters match the real values well (in both cases with
wo and five snapshot years), their estimators can be used
s the given values in another, repeated estimation process.
hus, the search space can again be reduced to two dimen-

ions. In fact, there is empirical evidence that the migration
arameter can be estimated well by patch occupancy models

Hanski et al., 1996; Appelt and Poethke, 1997; Moilanen et al.,
998).
9 9 (2006) 476–485 483

While the amount of snapshot years has nearly no effect
on the PMM, the large deviations of the GBM decrease at least
to some part (but still are enormous). This can be explained
as follows. With two snasphot years, the relative frequency of
occupancy may either be 0.0, 0.5 or 1.0. Remember the usage
of a minimum carrying capacity, which will be in this case
at least ≥ 0.5. Hence, there is an implicit tendency to homog-
enization of space, because nearly all cells are possible habi-
tats. Using five snapshot years, instead, the minimum carrying
capacity can be as low as 0.2. Alternatively, some other appro-
priate value could be used. Settele (1998) originally proposed
only to consider cells which may be potential habitats. More-
over, he suggested to approximate Ki by the mean number
of observed individuals. In this study, the relative occupancy
frequency has been used, in order to ensure the comparabil-
ity with the PMM, since this modelling approach uses only
presence–absence data, too. However, despite the scepticism
regarding the assumption of panmixia, the GBM might be an
efficient tool in certain circumstances and deserves further
exploration. The indicated modifications, though requiring in
practice much more field work, could resolve the essential
deviations. Future work will also have to consider different
cell lengths.

It should be mentioned that a couple of assumptions con-
cerning the IBM are debatable and could be refined to be even
more ‘realistic’. For instance, the way how dispersal (distance
and number of immigrants) is tracked might be a source of
bias and could explain the deviations especially in the colo-
nization parameters. Nevertheless, the migration parameters
can be estimated well. Moreover, grasshoppers oviposit their
eggs in clutches and not as single eggs, what might increase
the overall variability in metapopulation dynamics. Also the
way how environmental stochasticity is incorporated or the
rather fixed population growth limitation by ovipositing sites
could be refined. However, we want to emphasize that the
main point is that the IBM macroscopically exhibits ‘typi-
cal’ metapopulation dynamics and that the current model
assumptions seem to be sufficient for this more conceptual
approach.

What truly matters for practical purposes are the predicted
incidences which are based on the estimators. A possible
extension of this study is the comparison of observed occu-
pancies in the IBM with the predicted ones, once based on
the real values (to validate the real values themselves) and
once based on the estimators. This way of comparison has
been done by (Hanski, 1999, pp. 95). He generated artificial
data using a coupled map lattice model. The parameters were
chosen to model the Glanville fritillary butterfly in a realistic
patch network. With samples of these simulated data, on the
one hand the IFM and on the other hand a state transition
model was parameterized. With the estimated parameters,
occupancies were predicted in the current, in another and in a
perturbed habitat network and finally compared with the sim-
ulated occupancies. This study is restricted to the parameter
estimators, because they play the key role in patch occupancy
models. Extrapolating them to other landscapes (Hanski et al.,

1996) or similar species (Wahlberg et al., 1996) presumes that
they are validated. Deviations of up to one order of magni-
tude, however, suggest that the mechanistic underpinning of
the model equations are violated. Thus, concentrating on the
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process parameters instead of the incidences is essential for
evaluating patch occupancy models.

There is some more related work. Moilanen (2000) simu-
lated data by iterating a patch network of the Glanville fritillary
butterfly with a logistic regression model. With samples of
these data, two variants of the IFM and again a logistic regres-
sion model were parameterized. The aim was to investigate
the impact of the metapopulation quasi-equilibrium assump-
tion on the predicted patch occupancies. Other comparisons
of model types have been conducted by Jepsen et al. (2005)
and Hokit et al. (2001). Jepsen et al. (2005) studied the effect of
corridors and landscape heterogeneity on the dispersal proba-
bilities in an individual-based model, a movement model and
a variant of the IFM. Therefore, they first ran an individual-
based model of the field vole. By means of simplification, they
then parameterized the other two models and compared the
model predictions. The study by Hokit et al. (2001) aimed at
understanding different modelling approaches regarding their
assumptions and requirements for data. They parameterized
both the IFM and a stage-based matrix model with real data
samples of the Florida scrub lizard. The estimated parame-
ters were used for predictions in perturbed habitat configu-
rations as well as in artificial landscapes. Furthermore, the
obtained parameter estimators were individually increased by
25%, thus testing the model sensitivity. Gosselin (1999) evalu-
ated the IFM with respect to the equilibrium assumption using
Monte Carlo simulations in artificial landscapes with param-
eter values for the Glanville fritillary butterfly. McCarthy et
al. (2003) used data generated by a stochastic Ricker model
and tested the reliability of model predictions in response to
parameter changes.

The approach presented in this paper is more general. First,
various species in different landscapes and replicates have
been taken into account. Thus, the results are less specific.
Second, the comparison is based on the real values of the pro-
cess parameters and not on predictions of the same or just
another model. Third, the model generating the artificial data
is really independent of the ‘simpler’ (aggregated) models. For
example, it does not produce by way of its construction the
quasi-stability of the metapopulation. In fact, an IBM can be
seen as the most general model possible. The emergence of
metapopulation dynamics is just a result of individual inter-
actions in a fragmented landscape. By this means, it is also
possible to test the convergence of more complex (or struc-
tured) models to models on a more aggregated level or to
relate IBM-parameters to emergent behaviour on metapopu-
lation level (see, e.g., Adler and Nuernberger, 1994; Fahse et al.,
1998; Wilson, 1998; Casagrandi and Gatto, 1999, 2002; Hanski
and Ovaskainen, 2000; Keeling, 2002; Ovaskainen and Hanski,
2004; Revilla et al., 2004).

The use of an IBM also allows to investigate species whose
biology is not known in detail by exploring a range of pos-
sible IBM-parameters. Though IBMs are hard to develop, to
communicate and to analyze, they allow to incorporate a lot
of biological detail and realism (Grimm et al., 1999). Further-
more, the impact of many other factors on the population

or metapopulation level could be explored, e.g., continually
varying habitat landscapes (instead of a binary distinction
between habitat and non-habitat) or errors in the snapshot
data (Berger et al., 1999; Moilanen, 2002)—just in the sense of
1 9 9 (2006) 476–485

simulations as experiments (Peck, 2004). Generally, the mod-
elling approach presented in this study can also be extended
to other modelling types such as the classic Levins model or its
variants (Ovaskainen, 2002). It thus provides a step towards a
unifying framework for the parameterization, evaluation and
comparison of different model types.
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C., 1996. Pattern-oriented modelling in population ecology.
Sci. Total Environ. 183, 151–166.

rimm, V., Railsback, S.F., 2005. Individual-based Modeling and
Ecology. Princeton Series in Theoretical and Computational
Biology. Princeton University Press, Princeton and Oxford.

rimm, V., Wyszomirski, T., Aikman, D., Uchmański, J., 1999.
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