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Hubbell’s neutral theory of biodiversity has generated much debate over the need for niches to explain
biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional
equivalence of species in competition and dispersal. Almost no attention has been paid to another critical aspect
of the theory, the assumptions on the nature of the speciation process. In the standard version of the neutral
theory each individual has a fixed probability to speciate. Hence, the speciation rate of a species is directly
proportional to its abundance in the metacommunity. We argue that this assumption is not realistic for most
speciation modes because speciation is an emergent property of complex processes at larger spatial and temporal
scales and, consequently, speciation rate can either increase or decrease with abundance. Accordingly, the
assumption that speciation rate is independent of abundance (each species has a fixed probability to speciate) is a
more natural starting point in a neutral theory of biodiversity. Here we present a neutral model based on this
assumption and we confront this new model to 20 large data sets of tree communities, expecting the new model
to fit the data better than Hubbell’s original model. We find, however, that the data sets are much better fitted
by Hubbell’s original model. This implies that species abundance data can discriminate between different modes
of speciation, or, stated otherwise, that the mode of speciation has a large impact on the species abundance
distribution. Our model analysis points out new ways to study how biodiversity patterns are shaped by the
interplay between evolutionary processes (speciation, extinction) and ecological processes (competition,

dispersal).

A few years ago Hubbell (2001) presented a theory of
community ecology that stirred the scientific commu-
nity. He argued that the interplay between a few
basic processes (speciation, birth and death, and — on
a local scale — dispersal), could explain general large-
scale diversity patterns, such as species-abundance
distributions and species-area curves. He made three
basic assumptions: 1) individuals of different species are
functionally equivalent (neutrality assumption); 2) the
community size is constant (zero-sum assumption); 3)
speciation is comparable to mutation where each
individual has an equal probability of producing
mutated, i.e. speciated, offspring (point mutation
assumption). Hubbell developed his theory analogous
to the neutral theory of molecular evolution (Kimura
1983) with individuals, species, speciation and ecologi-
cal drift replacing genes, alleles, mutation and genetic
drift, respectively (Chave 2004, Hu et al. 20006).
Although his theory was praised as a fresh, falsifiable

contribution to community ecology (Brown 2001, De
Mazancourt 2001, Jetschke 2002) and has stimulated
the development of more advanced neutral community
theory (Chave and Leigh 2002, Vallade and Houch-
mandzadeh 2003, Etienne 2005), it has also been
heavily criticized (Abrams 2001, Clark and McLachlan
2003, Fargione et al. 2003, McGill 2003a, 2003b,
Ricklefs 2003, Fargione and Tilman 2004, Wootton
2005, Dornelas et al. 2006). The criticism was
predominantly directed at the neutrality assumption,
basically because it contradicts empirical evidence on
variation among species in life history traits which is
considered to cause functional differences rather than
functional equivalence. However, the zero-sum assump-
tion and the point mutation assumption have so far
mainly escaped criticism. There is good reason that the
zero-sum assumption has escaped criticism. It is
supported by empirical evidence on community satura-
tion, i.e. a fairly constant density of individuals in

241



ecological communities across sufficiently large spatial
and temporal scales (Hubbell 1979, 2001). Moreover,
it is a non-crucial mathematical simplification, as
shown in population genetics (Watterson 1974, Etienne
et al. 2006b). The point mutation assumption lacks
strong arguments in its favor. In fact, Hubbell already
pointed out that, in line with scientific consensus, real
speciation is essentially different from point mutation
and particularly should take into account the abun-
dances of the species in the community. He suggested
two other modes of speciation (Hubbell 2001, 2003,
Hubbell and Lake 2003): “random fission speciation”
in which populations are assumed to split randomly
into two species, and “peripheral isolate speciation” in
which populations are temporarily isolated to allow for
more rapid speciation. Still, while speciation has
received a tremendous amount of attention in evolu-
tionary biology (Howard and Berlocher 1998, Schluter
2000, Coyne and Orr 2004, Van Doorn et al. 2004,
Dieckmann et al. 2004, Gavrilets 2004), the conse-
quences of different speciation modes for community
structure have hardly been studied.

The speciation process in Hubbell’s model, as it has
been mainly used so far in the literature, is an individual-
level process that leads to a proportional relationship
between the speciation rate of a species in a community
and its abundance. Speciation by polyploidy is the only
speciation mode that roughly corresponds to this pattern
(Coyne and Orr 2004). In virtually all other speciation
scenarios, speciation requires the evolution of reproduc-
tive isolation, which implies that speciation is not an
individual-level process, but a population-level (or
species-level) process. Therefore it is not self-evident at
all that speciation rates should in general be proportional
to species abundance. In fact, it has long been argued
(Wright 1931, Mayr 1970, Bush et al. 1977) that just
low density and isolation by distance (allopatric specia-
tion) favor the emergence of new species, suggesting
even an inverse relationship between speciation rate and
abundance. It is far from clear what the relationship with
abundance would be in the still controversial sympatric
mode of speciation (Coyne and Orr 2004), and in cases
where it is sexual selection or sexual conflict rather than
natural selection that drives speciation. Unfortunately,
data on the relationship between speciation rate and
abundance are scarce. We found only one systematic
review of this relationship (Makarieva and Gorshkov
2004) and although it suggests that speciation is
independent of abundance, it seems irrelevant to our
current analysis. Makarieva and Gorshkov (2004) relate
speciation rates of 12 major taxa to their abundances
(which span 20 orders of magnitude), either directly or
indirectly via the rates of appearance of new genotypes
per species, whereas we are interested in more restricted
taxa such as tropical forests. Using indirect evidence on
this relationship — for example by using range size, age
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or body size of a species as a proxy for its abundance — is
tricky, because speciation may be driven by these proxies
themselves rather than by abundance or by other
processes that determine both (Jablonski and Roy
2003). We conclude that, data being scarce, there seems
no a priori reason for a proportional relationship
between speciation rate and abundance, and hence we
argue that for a “null model” of biodiversity, it is more
natural to assume that speciation is independent of
abundance than that speciation is proportional to
abundance.

We therefore modify Hubbell’s metacommunity
model in such a way that the overall speciation rate
per species is indeed independent of abundance. We
derive an analytical expression for the full likelihood of
the corresponding model parameter given a data set of
species abundance distributions which can be used to fit
the model to such data. Evidently, a good fit will not
automatically imply that the model should be accepted
(because other predictions of the model may be false),
but a bad fit will certainly suggest that some ingredients
of the model are unrealistic. Furthermore, we construct
a model where both forms of speciation (proportional
vs no dependence on abundance) are possible. By
confronting this model to the data, we can let the
data decide to what degree speciation depends on
abundance in a neutral model. Finally, to test the
robustness of our results, we also construct a model
with dispersal limitation, i.e. a model for a local
community subject to limited migration from a
metacommunity that is governed by abundance-inde-
pendent speciation, and we compare it to the dispersal-
limited model of Hubbell (2001).

Models

We start with Hubbell’s original discrete-time model
for the metacommunity (i.e. ignoring dispersal which
only appears in his local community model), with one
slight difference that simplifies some expressions in the
modified model and allows better comparison with
population genetic models (see Supplementary material,
SM). Where in Hubbell’s model individuals that die
leave no offspring, we assume that dying individuals can
still contribute offspring to the next generation, for
example seeds. This slightly different model is known as
the Moran (1958) model in population genetics, and
has basically the same properties as Hubbell’s model. In
the Hubbell-Moran model, there are Jy; individuals in
the metacommunity (resp. population), each having a
probability of speciation (resp. mutation), v;. For a
species with abundance n the total probability of
speciation is v(n) & vin which is a first order depen-
dence on abundance; hence the subscript 1. We will
refer to this model as M, the neutral model with a Ist



order (proportional) speciation-abundance relationship.
Because v(n) is a probability in a discrete-time model, it
cannot exceed unity and hence the relationship is only
proportional to a very good approximation when vin is
small; however, the corresponding speciation rate in a
continuous-time model is exactly proportional to
abundance (see SM). Both Jy; and v, are contained in
the compound parameter 8 which is, in the Moran
model, defined as
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Assume now that we have a species abundance data set
D with abundances of S species nj, Ny, . .. , ny summing
to the sample size, J. We then have the following
likelihood for the model parameter 0, which is the well-
known Ewens sampling formula (ESF) in population
genetics (Ewens 1972, Karlin and McGregor 1972):
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Here @; is the observed number of species with
abundance j and (0); is the Pochhammer symbol
defined as
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where I'(x) is the Gamma function.

Now we turn to the modified model where the
overall speciation probability of a species is independent
of abundance. We denote this probability of speciation
by v(n) =Vy, the subscript 0 indicating the zeroth order
dependence on abundance n. We will refer to this
model as My, the neutral model with a Oth order
speciation-abundance relationship. The likelihood of v,
is a new sampling formula, which we derive in the

Supplementary Material:
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Note that the metacommunity size Jy; does not appear
in this formula, whereas it does appear in Eq. 2, as it
enters O (Eq. 1). This reflects the assumption that
speciation only depends on the number of species, not
on the number of individuals. Indeed, in model M, the
total probability of speciation in the metacommunity is
proportional to species richness S, whereas in model M,
it is proportional to metacommunity size Jy; (see SM).
These models thus connect to the important debate
whether diversity begets diversity (Palmer and Maurer

1997, Emerson and Kolm 2005, see also Losos and
Schluter 2000).

We now consider the generalized model where the
speciation probability is a linear combination of the
speciation rate of the two previous models v(n) & v+
vin. We refer to this model as M_, the neutral model
with combined speciation-abundance relationship. For

this case the likelihood is another new sampling formula
(see SM):
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which reduces to Eq. 2 and Eq. 4 for vg =0 and v, =
respectively. Note that v; and Jy enter this formula not
only through 0, but also separately.

Finally, we build two models for a dispersal-limited
local community which has no local speciation, but
which receives immigrants from a metacommunity that
is in speciation-extinction balance governed by My or
M;. We will refer to these dispersal-limited models as
DLM, and DLM; respectively. We denote by m the
probability of immigration (Hubbell 2001). In the
Moran version of Hubbell’s dispersal-limited model, we
have a fundamental dispersal number I that is related to
m by

m
[=

Ju (6)
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where ] is the local community size (which is usually
set equal to the sample size J). Just as for 6, Hubbell’s
model has a slightly different I, i.c. Izﬁ(JL —1),
which is a negligible difference. If the metacommunity
has speciation proportional to abundance (M), we have
the dispersal-limited version of Eq. 2, which is given by
the sampling formula (Etienne 2005),

" (0)
(D (0),
where K(Ij, A) is a coefficient determined by the data
(see Etienne 2005 and SM). If, instead, the metacom-
munity has speciation independent of abundance (M),

we have the dispersal-limited version of Eq. 4, which is
given by (see SM):
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where the coefficients L(D, v, A) are determined by
the data and the parameter vq (see SM).

(8)
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Results

We confronted the three metacommunity models (M,
My and M) with 20 large (i.e. sample size larger than
5000) species abundance data sets of tree communities
taken from the literature (Fig. 1; see SM for data set
selection and references) and obtained maximum like-
lihood estimates for the model parameters. The results
are listed in Table 1. In all cases the model with first-
order dependence of the overall speciation rate on
abundance (M) gives a much better fit than the model
with independence of abundance (My). Moreover, the
model combining both speciation mechanisms (M,)
does not perform better than the model with propor-
tional dependence of overall speciation rate on abun-
dance (M), indicated by the Akaike weights (see SM)
for this model in Table 1. Most of these weights are
smaller than those for M, as the maximum likelihood
for M, is equal to the maximum likelihood for M;.
This may seem odd, as a model with more parameters
should always have a higher maximum likelihood.
However, this is only true for unconstrained likelihood
maximization. The parameter values are here con-
strained by 0 <** 4 v, <1 for all n, whereas the higher

maximum likelihood values are found at biologically
impossible parameter values (v <0).

We also confronted the dispersal-limited versions of
DLM, and DLM, with the same data. The parameter
estimates, loglikelihoods and Akaike weights are given
in Table 2. The expected and observed number of
species in each abundance class for six data sets studied
previously in a neutral context (Volkov et al. 2005,
Chave et al. 2006) are shown in Fig. 2. In most cases
DLM; again outperforms DLM,, but there are several
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data sets that favor DLMj as indicated by their higher
Akaike weights. However, the estimates of the specia-
tion probability vy are unrealistically high for all data
sets, and the corresponding immigration probabilities
are unreasonably low. This forces us to reject DLM,,.
Put in Bayesian terms (Etienne and OIlff 2005), the
prior probability of these estimated values is very small
which reduces the posterior probability enormously and
makes DLM, the inferior model. Furthermore, the
poorer fit of DLM; for some data sets is caused by the
huge underestimation of the number of very abundant
species. This becomes clear when we plot the number of
species logarithmically (Fig. 3). According to M,/
DLM;, such species should not exist (because they
speciate directly due to the proportional speciation-
abundance relationship in this model). To check this,
we removed the two most abundant species from the
data sets and we found that indeed DLM; fitted the
data much better than DLM, (results not shown).

For M; and DLM,; it can be shown that the
parameter estimates that maximize the likelihood also
make the expected number of species equal to the
observed number of species. For M;, the observed
number of species is even a sufficient statistic for 0, that
is, information on species abundances is not needed to
estimate 0; species richness suffices (Tavaré and Ewens
1997). In contrast, for My and DLM, the expected
number of species is substantially smaller than the
observed number of species, particularly in the non-
dispersal-limited model M. This is a clear indicator of
the lack of fit of (DL)M, to the data.

The general conclusion is therefore that the data do
not favor independence between speciation rate and
abundance ((DL)M,), but a proportional relationship
(DLMy).

16 18 21720

Fig. 1. Location of the 20 tree communities of Table 1 and 2.
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Table 1. Parameter estimates obtained by likelihood maximization of the three neutral metacommunity models with different speciation mechanisms (Mg: speciation rate is
independent of abundance; M: speciation rate is proportional to abundance, M.: the combination of My and M) for 20 species abundance data sets of tree communities (Fig. 1).

SiteP J© sd M; Mo M. Comparison®

0 ML Vo ML JM Vi Vo Gf ML WM1 WM0 WMc
1 13383 148 23.19  —241.85 0.246 —290.27 3.08 -10° 7.52-107 222 -10"" 2319  —241.85 0.731  6.82 - 10~ % 0.269
2 13045 103 15.17  —=216.70 0.224  —255.30  3.09 - 107  4.90 - 107 1.29 .10~ 15.17 —=216.70  0.731 1.26 -107" 0.269
3 9897 12 1.28 —65.86  0.145 —71.47 134 -10° 954-107 248 -10"" 1.28 —65.86 0729 2.66-10° 0.268
4 5298 158 30.51 —161.72 0309 —200.25 622 -107 4.90-10" 1.76-10"" 30.51 —161.72 0731  6.75-10" 33 0.269
5 7536 20 2.42 —72.67 0.200 —78.42 327 -10°  7.39 .107 1.29 - 10712 2.42 —72.67 0729 2.31-10° 0.268
6 6799 16 1.89 —68.30 0.179 —7418 266 -10° 7.09-10" 589 .10 " 1.89 —6830 0730 2.04-107° 0.268
7 6687 149 2690 —163.77 0326 —183.11 2.65-107 7.02-107 9.88 - 1072 18.59 —162.07 0330 1.32-10° 0.670
8 10358 26 3.14  —104.45 0212 —110.64 3.18 -10° 9.88 - 10’ 7.87 10713 3.14  —104.45 0730 1.49 -1073 0.269
9 5313 1 1.25 —45.83  0.185 —4893 1.67-10° 750-107 3.27-10"" 1.25 —45.83 0.708 3.20-10"? 0.260
10 18744 34 3.96 —154.84 0.166 —170.66 5.38 -10° 7.35-10" 4.85 107" 3.96 —154.84 0.731 9.84 1078 0.269
11 6507 153 2796 —161.67 0.326 —182.83 2.78-107 7.23-107 9.04 -10°? 20.07 —160.23 0392 2.52-10"" 0.608
12 12804 140 21.89  —214.86 0.255 —255.11 2.96 -10°7 7.39-10° 530 107" 21.89  —214.86 0.731 241 .107'8 0.269
13 6765 12 1.34 —53.25  0.174 —-5725 1.83-10° 735-.107 227-10""3 1.34 —53.25  0.721 1.31 1072 0.265
14 9088 701 176,99  —202.07 0.383 —337.56 2.27 -107 7.72 -10® 459 .107° 17486  —202.06 0.729 1.05-10"° 0.271
15 21457 225 3496  —318.85 0.245 —392.41  4.65-10° 752 -10° 3.42 107" 3496 —318.85 0.731 825 1073 0.269
16 24591 308 4952  —318.67 0.284 —377.58  4.01 -10° 1.11 -10° 2.89 -10°? 4435  —31831 0.655 1.71 -1072%° 0.345
17 26554 678 126.62 —392.51 0.280 —617.66 1.72-107 7.35-10° 1.32-107" 126.62 —39251 0.731 1.21-10"% 0.269
18 16936 167 25.64  —253.78 0.258 —297.31  5.23 -10° 490 -10° 3.02 10" ' 25.64 —253.78 0.731  9.09 -10~%° 0.269
19 17546 821 178.43 —307.58 0.340 —492.93 230-10° 7.75-10° 3.21-10"" 17843 —307.58 0.731 2.33.10°% 0.269

20 33175 1004  195.18 —437.89 0290 —763.80 3.98 - 107 4,90 - 10° 1.01 - 107" 195.18 —437.89  0.731 2.24 1074 0.269

Notes

a. Comparison between My, M; and M, expressed in terms of Akaike weights w; (see also Supplementary material (SM))
b. For references see SM

¢ Sample size

d. Number of species observed

e. The logarithm of the maximum likelihood

f. The value of 0 is fully determined by ]y and vy, only given here for better comparison with 6 in M,



Table 2. Parameter estimates obtained by likelihood maximization of the two neutral local community models (DLMg: the dispersal-
limited version of My, the model with speciation rate independent of abundance; DLM;: the dispersal-limited version of My, the
model with speciation rate proportional to abundance) for 20 species abundance datasets of tree communities (Fig. 1).

SiteP ) sd DLM; DLMy Comparison®
0 m ML® Vo m ML WDLM1 WDLMO
1 13383 148 32.58 0.082 —235.98 0.84 0.0030 —241.75 0.9969 0.0031
2 13045 103 20.38 0.090 —206.38 0.64 0.0056 —214.60 0.9997 0.0003
3 9897 12 2.37 0.0058 —63.02 0.55 0.00052 —65.44 0.9179 0.0820
4 5298 158 36.34 0.300 —160.03 0.86 0.0109 —160.48 0.6116 0.3884
5 7536 20 2.76 0.215 —71.77 1.00 0.00032 —72.67 0.7103 0.2897
6 6799 16 9.23 0.00084 —67.02 1.00 0.00028 —68.30 0.7832 0.2168
7 6687 149 26.90 1.000 —163.77 1.00 0.00401 —163.77 0.5000 0.5000
8 10358 26 3.37 0.408 —103.52 0.28 0.155 —106.90 0.9671 0.0329
9 5313 11 13.31 0.00038 —45.55 1.00 0.00024 —45.83 0.5713 0.4287
10 18744 34 6.70 0.012 —148.61 0.62 0.00075 —153.78 0.9944 0.0056
11 6507 153 28.19 0.929 —161.63 0.67 0.0283 —163.85 0.9023 0.0977
12 12804 140 28.28 0.130 —208.47 0.70 0.00824 —208.70 0.5589 0.4411
13 6765 12 8.89 0.00046 —52.57 1.00 0.00020 —53.25 0.6638 0.3362
14 9088 701 188.43 0.701 —199.96 0.90 0.0320 —193.74 0.0020 0.9980
15 21457 225 47.67 0.093 —308.73 0.773 0.0040 —317.72 0.9999 0.0001
16 24591 308 52.73 0.547 —317.04 0.682 0.0139 —310.56 0.0015 0.9985
17 26554 678 190.93 0.093 —359.38 0.894 0.0066 —391.59 1.0000 0.0000
18 16936 167 436.76 0.0019 —252.93 0.827 0.0032 —253.93 0.7311 0.2689
19 17546 821 204.17 0.429 —297.15 0.859 0.0219 —284.09 0.0000 1.0000
20 33175 1004 285.58 0.115 —386.38 0.802 0.0129 —427.22 1.0000 0.0000
Notes

a. Comparison between DLM; and DLM, expressed in terms of Akaike weights w; (see also SM)

b. For references see SM

c. Sample size

d. Number of species observed

e. The logarithm of the maximum likelihood

Discussion

We have shown that the original neutral model with a
proportional relationship of speciation with abundance
provides the statistically best fit to species abundance
data of 20 large tree communities. At least three
different conclusions are possible. First, speciation is
really proportional to abundance in natural ecological
communities. Rather than metacommunity diversity,
metacommunity size promotes speciation, so diversity
does not seem to beget diversity. However, metacom-
munity size and diversity are difficult to separate, as
they are obviously correlated. Second, the sampling
formula corresponding to (DL)M; indeed describes the
data best, but this does not mean that the model used
here to generate it is the most realistic one. Several
different mechanisms could (approximately) lead to this
formula, because pattern does not equal process (Cohen
1968, Purves and Pacala 2005). For example, in
population genetics, overdominant selection as well as
neutral mutations with genetic drift have been shown to
lead to the Ewens sampling formula (ESF) (Joyce et al.
2003), and the maximum likelihood estimate of 6
provided by the ESF also follows from non-neutral
models (Joyce 1995). Hence, the better fit of the
sampling formula corresponding to (DL)M; does not
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imply that the “true” model must involve neutrality
with a speciation rate that is proportional to abundance.
If we want to maintain abundance-independent specia-
tion because we believe it to be more realistic, our
results force us to reject neutrality. This is further
supported by increasing evidence on adaptive inter-
specific differences leading to strong niche differentia-
tion in tree communities (Wright et al. 2004, Poorter
et al. 2005). However, a third conclusion is that the
models are still too simple: a more sophisticated
speciation model with a more sophisticated implemen-
tation of neutrality (e.g. the saturating speciation-
abundance relationship mentioned below, a speciation
model where new species do not start with a single
individual but with many more, a spatial model, or
symmetric species subject to density-dependence) could
lead to a sampling formula similar to that of (DL)M,.
Hubbell (2001, 2003) suggests that this is indeed the
case for the random fission and peripheral isolate modes
of speciation, but this has not been fully explored, and
no analytical treatment exists. Our paper represents a
first strike at a more realistic and analytically tractable
alternative neutral speciation model, but so far fails to
provide a better description of community structure.
The model with speciation independent of abun-
dance, (DL)M,, produces fewer species than observed
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Fig. 2. Observed (bars) and expected (curves) number of species, according to My, the neutral model with speciation rate
independent of abundance (dotted curve) and M;, the neutral model with speciation rate proportional to abundance (solid
curve), for six data sets (15—20 in Tables 1 and 2). The binning method is similar to that proposed by Pueyo (2006) but without
converting number of species into densities. This method is essentially different from the Preston binning method as used by, for
example, Volkov et al. (2005). The Preston binning method was designed to obtain a lognormal shape, whereas the method used

here is a general-purpose method (Pueyo 2006).

which explains most of the bad fit to the data. An
inverse relationship between speciation rate and abun-
dance, as mentioned in the introduction, will probably
produce even fewer species, and consequently it will
even have a worse fit to the data. The only characteristic
in which (DL)M, performs better than (DL)M; is that
it explains the existence of highly abundant species,
which is highly improbable under (DL)M;. A saturat-
ing relationship of speciation with abundance will have
the best of both worlds (proportional to abundance for
small abundances and independent of abundance for
large abundance). In the supplementary material we
specify such a model, M. Although we have not found
the sampling formula for this model (or any other with
such a saturating relationship), we have found an exact
expression for the abundance distributions, for a
random and a dispersal-limited sample from a meta-
community with infinite Jy:

Eyg [S,%, 0,11 = (D |

(1 — )Y "Qx)dx (9a)

EDLMS [Sn|I7 X5 evJ]

I (T
=— Ix) (I(1 —x Q(x)dx
o (n> [ 000,00

where x; is a characteristic relative abundance at which
the speciation-abundance curve starts to saturate and

Q(x) is given by

e eif 91-):—Sx\+1
Qx) =—(1 —x) 1% 1< X5 ) :
X X + X,

This indeed suggests a better fic at high abunda-
nces (Fig. 4). However, there are also alternative
explanations of highly abundant species. For example,
Magurran and Henderson (2003) hypothesize a two-
component ecological community: on the one hand
there are core species that are highly adapted to their
habitat, and on the other hand there are occasional
species that largely obey neutrality.

It has been argued that species abundance data
cannot discriminate between different models of com-
munity structure (McGill 2003a,b, Volkov et al. 2005).

(9b)

(10)
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Fig. 3. Same as Fig. 2 but with logarithmic y-axis.

Our results strongly suggest that species abundance data
do have discriminative power, in agreement with
previous assertions (Etienne and OIff 2005, Chave
et al. 2000). It appears that species abundance data can
be informative about some processes (e.g. mode of
speciation) and uninformative about others (e.g. neu-
trality). At any rate, we stress that goodness-of-fit alone
is an insufficient criterion; the plausibility of the
parameter estimates must also be taken into account
(the Bayesian view). This also implies that descriptive
statistical models having parameters without a clear
interpretation (e.g. the Poisson lognormal) have very
limited value. Furthermore, visual inspection of good-
ness-of-fit may be misleading, as indicated by the
comparison of linear and log-transformed abundance
distributions. The statistical likelihood analysis was able
to detect differences between model predictions and
observations that are hidden in standard linear species
abundance plots.

Although our results suggest that species abundance
data do have discriminative power with respect to
speciation modes, a completely different interpretation
of our results exists that does not involve speciation. The
metacommunity abundance distribution of the original
neutral model M can also be derived by assuming a very
low level of immigration into the (non-zero-sum)
metacommunity with immigrants coming from some
abstract infinite species pool where all relative abun-
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dances are equal (Etienne et al. 2006b). This was in fact
the original explanation of Fisher’s logseries by Kendall
(1948). One may be tempted to conclude from the good
performance of M; and DLM; relative to My and
DLM, that the probability of immigration of a new
species into the metacommunity does not increase with
the number of species in the metacommunity, a
reasonable explanation; it also makes the relatively
high values of the “speciation” parameters more likely.
However, My and DLM,, were built upon assumptions
on speciation and, unlike (DL)M}, do not seem to allow
for a (simple) reinterpretation in terms of immigration.
Moreover, the immigration interpretation only pushes
the problem to another level: it still requires an
explanation of the diversity and abundance distribution
in the abstract species pool (which acts as a meta-
metacommunity), ultimately in terms of speciation and
extinction. The metacommunity was precisely defined
to play this role (Etienne et al. 2006b); immigration is
treated in local community models (DLM). In this
sense, the species pool in Bell’s (2001) neutral model is
not a true metacommunity.

The neutral model has been criticized because it
predicts species that are impossibly old (Nee 2005).
However, the old age of species does not seem to be
much affected by the mode of speciation; even the
species’ initial abundance does not matter much:
translating a result from population genetics (Kimura
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and Ohta 1973) leads to an expected age (expressed in
generations) of

1 —x,

Ax,xy) = 2]y |:1 + log(1 —x,) + . log(x)
X

1 —

X

~—2]u L log(x)} for xy «<x

-X
an

for a species currenty at relative abundance x with
initial relative abundance xo. Strictly, this result is only
valid for M; and for 8 >0, but we expect that the
assumption of ecological drift in a metacommunity
of constant size has a much greater impact on the age of
species than the mode of speciation, the amount of
dispersal limitation or the value of 6. The zero-sum
assumption (constant metacommunity size) only allows
species to grow in abundance at the cost of the
abundance of other species, but in a non-zero-sum
metacommunity species can grow as rapidly as allowed
by their reproductive number and hence reach an
appreciable abundance in much less time. Yet, the
equilibrium sampling formulas of zero-sum and non-
zero-sum communities are identical, at least for the
standard Hubbell model M; (Etienne et al. 2006b).

The ecological drift assumption makes demographic
stochasticity the primary driver of species dynamics,
whereas in macro-evolutionary time environmental
stochasticity and catastrophes play a much more
important role and will shorten species ages substan-
tially. However, when averaged over evolutionary time,
these processes may well be neutral, leading to
equilibrium distributions that are similar to the ones
presented here. As an analogy from physics, imagine
two initially separated gases that are allowed to mix.
With only diffusion it will take eons to reach
equilibrium, but with some stirring, this time is
enormously shortened, yet the equilibrium will be
similar. In sum, our results, which are based on
equilibrium sampling formulas, are not a priori
incompatible with realistic species ages.

Even if a realistic speciation mode will eventually
force us to reject neutrality, the neutral model has
merits that should be retained (Alonso et al. 2006). The
model has brought Ockham’s razor back to community
ecology and should continue to inspire the construction
of new neutral and non-neutral models. The sampling
formulas it has generated (Etienne 2005) give excellent
descriptions of species-abundance data in terms of
interpretable parameters that can be calculated from,
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and compared between data sets (Etienne and OIff
2005). Furthermore, it has stimulated work on stochas-
tic community models in a field where deterministic
models were the norm. Finally, it has provided a new
perspective on how to model dispersal in community
ecology and has recognized it as a sampling phenom-
enon (Etienne and Alonso 2005). This study is the first
example of dispersal-limited sampling applied to a
metacommunity that is described by a different process
than in the standard Hubbell (2001) model.

Our results stress a more general point linking
evolutionary biology and community ecology (McPeek
and Miller 1996): the nature of the speciation process
greatly affects community structure. For example,
speciation rates strongly reflect the mating system
(Arngvist et al. 2000), which may therefore play a
more crucial role for community structure than typically
acknowledged in ecological models based on asexual
reproduction. Also, genetic diversity may be strongly
related to species diversity (Vellend 2003, 2005); a
simple (individual-based, spatial) neutral model of
genetic drift leading to reproductive isolation, and hence
speciation, combined with ecological drift, may already
provide important new insights. We hope that our paper
will stimulate research on speciation in ecological
communities, and in particular the relationship between
speciation rate, species abundances and species diversity,
where alternative hypotheses are tested against the
observed structure of real ecological communities.
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Derivation of the new sampling formulas (for My, M,
and DLM,), of the abundance distribution (for M, and
DLM;) and details on the selection and analysis of and
references to data sets in Table 1.
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Supplementary material

Appendix A. Derivation of the new sampling formulas
(for Mg, M. and DLM,)

Deterministic model

We first construct a deterministic continuous-time
model of the expected number of species with abundance
n which we denote by S,.. Let g, and r, be the rate of
increase and decrease of the number of species with
abundance n respectively. Assume that there is a ceiling
¢ <]Ju to the abundance of a species, g, =1, ; =0 for
n >c. New species enter at a rate g that may depend
on the S,. The dynamics of S, are then described by
(Alonso 2004, Etienne and Alonso 2006, Mckane, A.].,

pers.comm.)

ds
d_tlzgo“‘fzsz_(fl +8)5 (A-1a)
ds,
dt = gn,151~‘71 + rn«FISnJrl
—(r, + g )S, for 1<n<c (A-1b)

dS

<= gcflscfl - rcsc (A'lc)
dt

It is fairly easy to see that the steady-state solution must be

5, =% (A-22)
5
Snzhsn_l for 2<n<c (A-2b)

rn

which can be written as
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n n—1

S,=2T[ % =5,

n
5

(A-3)

sl
ot |99

-

j=2 n j=1

with the convention that the product returns 1 if j >n.

In the continuous-time version of Hubbell’s (2001)
model with zero-sum dynamics (constant community
size Jp), the parameters g, and r, are given by

g, (A-4a)
N
r= B0y — )+ 9]y (A-4b)
T
g = ViJu (A-4c)

where B is the per capita birth rate and V, is the per
capita speciation rate (where the subscript 1 refers to the
Hubbell model, see the main text). We see here that the
overall speciation rate, gp, is proportional to metacom-
munity size Jp; and the per species speciation rate is
proportional to the abundance n. We can rescale
the parameters g, and r, by introducing a scaling
parameter K,

Ko =BJy + ¥iJu (A-5)
Rescaling time and the speciation rate as
7. =Kt (A-6a)
=8 Yl (A-6b)
K K

we obtain the following dimensionless parameters,

g =g (A7a)
I
— (M —y “) (A-7b)
JM ]M JM
g =V (A-7¢)

These dimensionless rates correspond exactly to the
transition probabilities in the Moran version of Hub-
bell’s model in discrete-time. The Moran (1958, 1962)
model in population genetics is identical to Hubbell’s
except that, in contrast to Hubbell’s (2001) formula-
tion, individuals that will die in the next time step are
allowed to produce offspring before they die. For
example, seeds may be produced before the mother
plant dies. The rates (Eq. A-4) or the rescaled rates (Eq.
A-7) lead to Hubbell’s standard model with its well-
known distribution of expected species abundances:

S.0,],) = 00y +1—n),

A-8
n(Jy +6—n), (A-8)

where 0 =0y101an
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A%
. 1
eMoran' - JM
1 —v

(A-9)

For comparison, the original Hubbell model (where
there is no reproduction before death) has

, (Jy — n)n

= (1—v) (A-10a)

& ]M(JM - 1) b !
, n(Jy—n n—1

R G+Vl) (A-10b)
]M M T 1 JM —1

g =Vi (A-10c)

and (Vallade and Houchmandzadeh 2003, Etienne
2005).

(A-11)

eHubbeIl 1 — Vl
and these also lead to Eq. A-8. Hence, the only
difference between the Moran version and the
original version is the slight difference in 0 which is
negligible in practical cases where Jy; is assumed to be
very large; morover Jy; and v; cannot be independently
estimated from species abundance data, only 0 can
be estimated. [A technical detail: Hubbell (2001)
actually stated that 8 = 2V,J; this is the 8 for one of
his models which has non-overlapping generations
(Etienne and Alonso 2006), whereas the model cited
mostly in the literature (Vallade and Houchmandzadeh
2003, Etienne 2005) has overlapping generations, as
does the Moran model]. Formula A-7 is invariant
under sampling, i.e. for a sample of size ], simply
replace each Jy; by ] (but not the Jy that appears
in 0):

00J+1—n),
n(J+6—n),

The speciation probability per individual in Hub-
bell’s model is a constant v; which leads to a speciation
probability per species of approximately vin (and a
speciation rate of exactly ¥;n). Now we move to the
new model with a speciation probability that has the
same value Vo for each species. This results in a
speciation probability of ¥ per individual (to a very

S.0,]) = (A-12)

good approximation). We can substitute this for v; in
Eq. A-7 to obtain the dimensionless rates

g fuznn (1 —ﬁ> (A-13a)
v Iu n
r;=n<M_n+nV°> (A-13b)
Jm Ju Jun
g :ﬁ (A-13¢)
N



This leads to

CS Tw = L4 v 17 O — DGvy)

_HJM_D+V0 i1 10y — 14 vp)

_ I'h — J,)INn — v)I'(2 — vy — J) i

ST — )OI — vOI(d 4+ n — v, — J,,) !
(1 — Ja (1 = vg),

=S a A-14
Do - T = Vodaor ( :

We can calculate S; by using the fact that Jy =
¥ nS, which yields

JM(VO)]M—I (1 = Jwaoi (T = vy,

S

n

S.(Vos Jn) =

Ou = Db 0l = Jy — Voo
_ (]M> Tln — v)I'(Jy — 0 + vp) (A-15)
n F(JM)F(VO)F(l - V())
Summing over n yields
1
S(vg, ]u,) :( + Vo) o1 1 (A-16)

Ju — D! vB(vy,])

where B(x,y) is the Beta function. For a sample from the
metacommunity of size ] we must apply the hypergeo-
metric distribution and it can be shown that the formula
for S,, (and hence for S) is invariant under sampling:

J (j) (JM —-j)
Sn(VO’J) _ ZM n —1n JM(VO)JM*I

= () e
J

(1 — JM)j-l(l - VO)jfl
X
M2 =Ty — VO)jfl
ZJ(VO)]—I (1 =y (1-vg),
J—1D! a2 =7 — vy, _,

_ (]) T(n — v)I(J — n + v,)
n/ o T(DI(vOI (1 — v,)

(A-17)

Vo L( % 202 2v

1 4 1 4\41 42
3 Vo 2/2vy 2vy 1 Vo 2/2 Vo
—(1—— Vi Srienin it sholl [0 Seebonll B I bll ol (0 et
4( 1) 4(41 42 4 1 4\4 1

2/1 Vo

T= 0 (= (1——

4\4 1

0 22 (1Y

4 \4 2

0 0

This is an important result, but it does not give us the
required sampling formulas. We will presently turn to
the derivation of these sampling formulas, using the full
stochastic discrete-time model, but first we want to
emphasize an important difference between the two
modes of speciation. We saw that Hubbell’s standard

model has g, = VJILM and that the modified model has

S . L. .
g :%_ This suggests an alternative interpretation of

the two models. In the first case the overall speciation
rate is proportional to metacommunity size, whereas in
the second case it is proportional to metacommunity
species richness.

Stochastic model

We use an inductive approach, where we model the
transition of one state of community structure (i.e.
the exact abundances of each species) to another in
discrete time. Hubbell’'s model is a Markov model
(Markov chain), as the probability of transition of one
state to another only depends on the state of the former
state, and not on any previous states. For Markov
models the stationary state (the probability distribution
of all possible states in equilibrium) is given by the
normalized eigenvector of the transition matrix corre-
sponding to the dominant eigenvalue (A =1). Hence, if
we can construct the transition matrix and determine its
leading eigenvector, then we have the stationary state of
the community, and when we take a sample from that,
we have the sampling formula. The number of possible
states increases very rapidly with community size, which
makes construction of the transition matrix, let alone
eigenvector calculations, unfeasible for even small
communities size (Jy; >10). We therefore extract a
general pattern for very small community size and then
check it for larger values by other means (see below).
For example, for Jyy =4, we have 5 possible states:
(1,1,1,1), (1,1,2), (2,2), (1,3) and (4). The transition
matrix T is given by

0 0 0
Z(1_Yo)) 2M 2% 3(1¥% 3% 0
4 2 42 42 4\41 43
201 % 3% 0
4 2 4\4 1
200w 330 WYL 3% v
4 2 4 3 4\4 43 4
13 Vo Vo
0 ——1-— 1——
44 3 4
(A-18)

253



For instance, element T(2,2) gives the probability to
remain in state (1,1,2). This probability can be
calculated as follows. In the model, one individual
must die. This means that the state between two time
units is (1 2) with probability 2 3 or (1,1,1), also with
probablllty In the first case the state (1,1,2) can be
re-entered if there is speciation or if the dying
individual produces offsprm% that replaces itself. The
former event has probability 7 Yo i‘;” whereas the latter
event has probability 1(1 — VfU) In the second case the
state (1,1,2) can be regamed if any of the individuals
reproduces without speciation which has probability
%(l —VT“) —I—%(l —%“) Adding all this contribution
results in T(2,2). The normalized eigenvector of T
corresponding to eigenvalue A =1 is

Vo
2vi(1 —v,)
1
Evo(l —v,)
2 (A-19)
—Vo(1 = v )2 —v,)
3
1
E(S — Vo)(2 - Vo)(l - V())
For example, the fourth element, 2v,(1 — v,)(2 — v,),

gives the probability of state (1,3). Repeating this
procedure for other small values of metacommunity size
and computing the eigenvector corresponding to A =1
gives stationary distributions that can be generalized to

Py, [Dv, o
= Ju VS’I(S—I)'fI(l—v)
_Hiszl n1!HJJ:1 (D! ’ ‘1=1 o
JM' s 1 S -1
I, o TI, Jy — 1!

S

(-

i=1

(A-20)

The second line is written in such a way that it has
the same prefactor as the Ewens sampling formula.
So far we have no formal proof of this result for
arbitrary values of Jy. However, it can be verified
numerically for any choice of Jy (within computa-
tional power). Also, it is fairly straightforward to
show (and easy to check numerically) that this
distribution is invariant under hypergeometric sam-
pling (show that it is true for a sample of size
J=Jm —1 and by repeating this, it follows that it is
true for any J). Hence Eq. A-20 also holds for
samples of size | if we replace Jy by J. Furthermore,
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it can be shown analytically that the expected number
of species with abundance n that follows from the
stochastic Eq. A-20, which we will denote by
M [S,Ivg, J], is equal to S, given in Eq. A-17,
which was obtained from determmlstlc differential
equations (hence the difference in notation). First
note that (see also Etienne and Alonso 2005),

Ey, [S,1v. ]

_ EJ: ® J! o (S — 1)
) X nHiszl n; H;:1 (I)j! ‘ (J— !

J 1
-3y :
} HS n; H]J:I ((I)j - Sjn)! ’

; 1
(1=5)
j=1 J

Deﬁnmg ®;: = ®; — 3, where §;, is Kronecker’s delta
(which is equal © 1if j=n and 0 otherwise), we can
rewrite this as a sum of probabilities of observing
exactly @, —1 species with abundance n in a
subsample of size ] —n,

Ey, [S,1vo,]]
Vo I J—n-—

S T—o G- (s-1)H (1_\’0)
— (J—n) S—1-1
X —V,
lp'nz_o {;@{} H§;11 n; f;? (Dj! ’
n—1
H (l—vo)
j=1
v, ] o i—V
=2 — (S—1)
()3

n]—nj:1

(A-21)

(5—1—1)'S
(J—n—l)'l

—

o (J — n) VS*H(S —1-=1)
ILo) oI5 @ " —n— 1)
S—1 n—1 .
X H (1—}\/0):\/0 J 0= v
i=1 j=1 ) n]—n (n—1)!
(J—n) e
Z(S_I)H_S_ij I} ey (S) 1—1

_ _ |Sln71
x (S_rll_ I))' H H ( vo> (A-22)



We now use the fact that

(J —n)! s, 8=1—=1)1
Z(S 1‘[5 ! . c1>j’!v° J—n—1)

{D} i=1 i

S—1 nm—1

X H (1—;\/0)

i=1 j=1

1+ Vo)]—n—1
J—n-—1)
where the latter equality can be derived by summing
over the E[S,|vy,J]. This equality can also be

independently established (similar to the derivation
for the original Hubbell model performed in Etienne

= Ey [Slvy,] — nl= (A-23)

and Alonso 2005). With Eq. A-23, Eq. A-22
becomes
v, J (1 4+ vo)y_n_
E SV, :707(1_\/)7¢
Mo[n|0J] aJ—n 0n1(J_n_1)!
VO ]
nl (] — n)'( = Voot (T Vo)
_Yo
(I—vy+j—1)
ol — n)' H ot
J—n—1

< [T G+ve+j—D
i=1

n—1

qu—,)H(l_vOﬂ—n
xH(vo—l—J—l) H 1V0+J*1

b T o T
=——— || v+ji=D|] G-
(]—1)!n!j1:[1 o) jUIJ
n—1 J—1 1
< TTa=v,+j—1 S
11:[1 ' j=JH+Il_V0_J

J J—1 ) n—1 .
— ) Tw+i—-v[Ja-1+j-»
(]—1)!n!j1:[1 o) JUI :

n—1 n—1
. 1
X ‘||(1—v0+)—1)‘||27]7
j=1 j=1

Vo +j—1

=J(VO)]—1 (=D, (0 =),
Jg—1 nl@2—-7—=vy,_,
which is identical to Eq. A-17.

By the same reasoning we find the expressions for
M, and again it can be shown that the resulting

(A-24)

sampling formula is also invariant under hypergeo-
metric sampling (but a separate dependence on Jy
remains, see Eq. 5) and that it leads to the expected
number of species with abundance n given by Eq. A-3
with the appropriate substitutions for g, and r,,. The
latter expression can also be shown to be invariant
under hypergeometric sampling.

Dispersal limitation

To obtain a dispersal-limited version of the sampling
formula (4) we apply the dispersal-limited sampling
formula given by Etienne and Alonso (2005):

1 )i

]J:l (I)j! n,!..ng!
S
(H s(nl,al)>

as Pla,, .. ENIOR Al

A=1 fa agi_ a=A}
IA

A-
X — ) A' (A-25)

where I is the fundamental dispersal number
(Etienne and Alonso 2005), © represents the model
parameters of the non-dispersal-limited model and
Pla,,...a5|®, A] is the sampling formula for a sample
of size A from the metacommunity. If we substitute
Eq. 2 for Pla,,...a5|®,Al], we arrive at the Etienne
sampling formula (Etienne 2005, Alonso et al. 2006).

PDLM1 [f)'ev IaJ]

] 0° I
= R D A)—
[T-, nIL-, @M, AZ K )(e)A
. J * (0)
=P, [D|0, K(D,A)— 7 A-26
w, D] J]AZ; ( )(DJ . (A-26)

with K(D, A) given by

Z H s(n;, al) ;"

(A-27)

Here §(x,y) denotes the unsigned Stirling number of
the first kind (see Etienne 2005). If, instead of Eq. 2 we
substitute Eq. 4 for P[a,, ...ag|®, Al, we obtain

Poiwm, [D|Vo» L]l

) I "qg-n
_PMO[DIVO,J]; LD, vo, A M, (A — 1)

(A-28)
where L(f), Vo, A) is given by
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- — V), _
L(D, v,,A) = Z Hs(nl,al) 0731
{ars aSlk:lai:A} i=1 - Vo)ni71

(A-29)

Likewise we can calculate Epyy; [S,[Vo, I, J]. From
Etienne and Alonso (2005) we have

E[S,|1,0,]]

(NS S n e
- (n) /; ; s(n,a)s(J] —n,A — a)a

1
>< [
A
(5
This yields, substituting Eq. A-17 for E[S,|®, Al,
Epin, [SalVe, 1 ]]
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(1)]<>
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_ 1 <]>f (1,11 — %)),
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X -
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dx (A-31)

and summing over n gives

256

Eppy, [SIVo, 1,J1

_ v f (1 _ M)
T(v)T(1 — v J o (D,
Vo—1
x &dx (A-32)
xVo+1

where we have used Vandermonde’s formula,

N
N
(x+y)y = Z (n) (CONCONE (A-33)
It may be interesting to note that
1 __sinmy, (A-34)

Ly —v,) =
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Appendix B. Derivation of the abundance curve of M
and DLM,

In the discussion we suggested that a saturating
speciation-abundance relationship would be a more
realistic model. Although a tractable sampling formula
is not available, we can derive the abundance curve for
this model, M; and its dispersal-limited version, DLM,,
that is expressions for E[S,|®,J] and E[S,|I,®,J] in
the limit of Jy; =00 (where v{ —0 such that 0 becomes
a finite number). For this we use again Eq. A-3 with the

following rates
XV, )
X, + ﬁ

o = ]M—nn<1
" M Iu

(B-1a)



v n (]M —n _ n XV ) (B-1b)
I Im Ju x + J:A
] .
M S
g=Y (B-10
-1 % + JM

where x; is a characteristic relative abundance at which
the speciation-abundance curve starts to saturate (xq
may exceed unity as it is not a real relative abundance).
For x,—00 we retrieve the standard Hubbell model,
M;. For small x; we obtain something similar to M,.
With these rates Eq. A-3 becomes

S, =g—§ (B-2a)
I
:SL“*‘g M= DA+7)+0
ot n((JM — )1 + yn) + 0)
n—1
" Ju — J)(l + YJ) (B-2b)
where
1
= B-
Y S —v) (B-3)

We will compute S; by using the fact that Jy =
> 1S, but only after we take the limit for Jy; — 00
After some straightforward algebra we obtain

S, () IG+n I(—y+2)
" nI(Jy—n+DIC+DI(—y+n+1)
IJy—n—-y—12

X
Iy —1-y—3

where

IR U W A
Y—2 M Y > M v Y

The asymptotic behavior of the Gamma function is
known as Stirling’s formula,

(B-4)

(B-5)

1
T'(z) ~ e_zzz_zv 2n  for large z

(B-6)
and the asymptotic behavior of p is given by
X
r— —0—
y JMXS 1+ X,
for large J,; and small v, (B-7)

When we let Ja go to infinity, we need the continuous
version of S, which we call Q(x)dx; this is the number
of species with relatlve abundance between x and x+dx.
Because dx = J— and n =xJy we have, using B-6 and
B-7,

Q) = lim JyS,

X,
o1 %
S (1 —x) 1*x X, bt
=9
X X + X,

(see also Vallade and Houchmandzadeh 2003). The
constant S; can now readily be determined by

(B-8)

1
J xQx)dx =1 (B-9)
0
and this gives S; =0, so
0 X GL&H
Qx) =—(1 —X)e“r"s ] <X9> a (B-10)
X X + X,

Finally, we can use the following expressions for a
random and a dispersal limited sample of size ] (Etienne
and Alonso 2005),

1
By [S,l%,,0,]1 = (i)f (1 —x) "Qx)dx (B-11a)
0

Epium, [S,IL,x,,0,]]

1
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Appendix C. Data set selection and analysis

Data files and literature references for the first 13 the
data sets of Table 1 were kindly provided by Andrew P.
Allen, who searched for all the standard terms “perma-
nent plots”, “stand plots”, “forest inventory”, etc. in
SciSearch, JSTOR, and the Latin American electronic
journal portal SciElo (www.scielo.org) to find refer-
ences, and then checked bibliographies to find other
references. This resulting in some 120 data sets of tree
communities. From these only those with sample sizes
larger than 5000 were selected, as smaller sample sizes
yield too unreliable parameter estimates. Seven large
tropical tree data sets were added, one (Manu N.P.)
provided by Nigel Pitman and six from a recent paper
by Volkov et al. 2005, to extend the range of diversity
values. In addition to Nigel Pitman, we thank John
Terborgh and Percy Nufiez for the Manu N.P. data set.
Some of the data sets in Volkov et al. 2005 were also
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found by Andrew Allen; in those cases we used the data
file provided by Volkov et al. 2005.
The Akaike weight of model i in Table 1 and 2 is

calculated as

(C-1)

where A; is defined by the difference between the
model’s Akaike information criterion (AIC) and the AIC
of the best model (i.e. the model with the lowest AIC):

A;: = AIC, — AIC, . (C-2a)
AIC, = —2log(L,) + 2K; (C-2b)
where K; is the number of parameters (degrees of
freedom) of model i (K=2 in our dispersal limited
models) and L; is the likelihood of model i (in our

dispersal limited models they are given by Eq. 7 and Eq.
8). Inserting Eq. C-2 in Eq. C-1 gives

el"g(L.) —log(L ) —Ki + Ky

(C-3)

W, =
‘ i elog(L;) —log(L,;,) =K + Ky

For M, we used 2 degrees of freedom. This is a
conservative estimate. There are at least 2 degrees of
freedom, because apart from 0 there is one additional
independent parameter, Vg, in M. But there are actually
more degrees of freedom, because the parameters v; and
Jum that are contained in a single parameter 6 in M,
decouple in M. The number of degrees of freedom is,
however, not 3, because v; and Jy remain highly
correlated in M, so it is somewhere between 2 and 3.
For the data sets we studied, the correlation between the
estimated v; and Jy is indeed very high: choosing
different initial values in the numerical optimization
algorithm yields different values, but the 6-value
determined by v; and Jy; remains the same.
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