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Turnover of sex chromosomes induced by
sexual conflict:
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The text describes a model consisting of 4 loci: locus Y (the ancestral sex-determining locus), locus A (a sexually-antagonis-
tic locus linked to Y), locus y (an autosomal locus segregating for a new dominant masculinizing mutation), and locus a (a
sexually-antagonistic locus linked to y). In Sections (1) - (3) of this supplementary material we derive an analytic approxima-
tion for the evolution of the new masculinizing allele at locus y. The main result appears in the text as Equation (1).

The analysis is simplified by the following consideration. If selection coefficients at the sex-antagonistic loci A and a are
small, then their contributions to the evolution at locus y are approximately additive (to leading order in the selection coeffi-
cients). This follows because locus A is unlinked to both a and y, and so departures from additivity (which depend on 3-way
linkage disequilibria) are negligible relative to the individual effects of A and a on y (which depend only on two-way disequi-
libria). We have verified this intuitive argument with a formal analysis using the methods of Kirkpatrick et al. (2002, Genet-
ics 161: 1727-1750).

Our strategy is therefore to decompose the 4-locus model into two models of three loci. In Section (1), we calculate the rate
of evolution for the masculinizing mutation in a model that includes loci Y, y, and A. In Section (2), we calculate its evolution-
ary rate in a model that includes loci Y, y, and a. Finally, in Section (3), we add the result from Sections (1) and (2) to arrive
at text Equation (1). Following that, in Section (4), we evaluate the validity of our results in the limit of full linkage (no
recombination), and we present simulation results for a number of cases that deviate from our basic model assumptions
(Section (5)).

This document has been generated using Mathematica (Wolfram 2003). The original file is available from the authors on
request and can be used to verify the calculations.

1 - Effect of a sex-antagonistic locus on the sex chromosome

In the first submodel we keep track only of the loci Y, y and A. A fraction €, of the males in the population carry a novel
masculinizing sex determination allele at locus y. Our analysis focuses on the evolution of this mutation when it is rare (that
is, €, < 1). Four additional variables are needed to describe the genetic state of the population. These variables measure the
frequency of the allele 1 on locus A in female or male gametes with a particular combination of sex determination alleles.
They are defined as follows: X, represents the frequency of allele 1 at locus A on X chromosomes in female gametes. The
variables X4, and Y, denote the frequency of allele 1 at locus A on the X- and Y chromosomes transmitted via the gametes
of normal males. The final variable, x4, corresponds to the frequency of allele 1 at locus A on X chromosomes in the gametes
of males that carry the novel mutant sex determination factor.
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Recursion equations

To derive the recursions that describe how the population evolves, we start by calculating the frequencies of genotypes at
locus A in female zygotes, normal male zygotes and mutant male zygotes. We assume that mating is random. Genotype
frequencies are listed in the order {11, 10, 01, 00}, where the first and second numbers in a genotype represent the alleles
inherited from the mother or the father, respectively. In individuals homozygous for the original sex determination factor
(females and mutant males), the genotype classes 10 and 01 can be grouped together.

When the mutation is rare, the frequencies of the genotypes in males and females that do not carry the mutation can be
calculated approximately by neglecting the mutation:

femaleZygoteFreq = {Xa, Xa,, Xa, (1-Xa,) + (1-Xa ) Xay s (1-Xa) (1-Xp,)};

normalMaleZygoteFreq = {Xa, ¥Ya, Xa (1-Ya), (1-Xa ) ¥a, (1-Xa ) (1-Y¥3)};
The frequencies of the genotypes among males that carry the mutation are:

mutantMaleZygoteFreq = {€y Xa, Xa, €y Xa, (lL-x%xa) +€y (1 -Xp ) Xa, €y (1 -X5, ) (L-xa)};
Next, we define the genotype fitness values for the different kinds of individuals.

femaleFitness = {l+sa,, 1+ hy sa, 1};

normalMaleFitness = {l+s,,, 1+ hy, s, , 1+ hy, sa,, 1};

mutantMaleFitness = {l+s,,, 1+ hy sa,, 1};

A genotype's frequency in adults is given by the product of its frequency in zygotes and its fitness, normalized by the mean
fitness. Since the frequency of the mutant allele is low, we may neglect the impact of mutant individuals on the mean fitness.
Thus we have:

femaleZygoteFreq » femaleFitness

femaleFreq = =
W
{(l+sAF)XAFXAM (1 +ha sa;) (Xap (1-Kpy) + (1 -Xa) Xay) (l_XAF)(l_XAM)}
W ! W ! We
normalMaleZygoteFreq * normalMaleFitness
normalMaleFreq = —
Wy
{(l+sAM)XAFYA (1 +ha, sa,) Xap, (1-Ya) (1 +ha, s3,) (1-Xa,) ¥Ya (1-Xa,) (l—YA)}
Wy ! Wy ! Wy ! Wy
mutantMaleZygoteFreq » mutantMaleFitness
mutantMaleFreq = —
Wy
{(l+sAM)xAXAF €y (1+ha, sa,) (Xa (1 -Xa, ) €y + (L -Xp) Xp, Ey) (1-xa) (l—XAF)ey}
Wy ! Wy ! Wy

The mean fitnesses in females and males are:
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3
We = Z (femaleZygoteFreq * femaleFitness) [[i]]

i=1

(1-Xap) (1-Xay) + (L+sa) Xap Xay + (L+ha, Say) (Xap (L-Kp, ) + (1 -Xa ) Xay)

4
Wy = Z (normalMaleZygoteFreq * normalMaleFitness) [[i]]

i=1

(1-Xa,) (1-Ya) + (L +ha, sa,) Xap (L -Ya) + (1+hy, sa,) (1 -Xa,) Ya+ (1+8s ) Xa, Ya

By calculating the frequencies of the different haplotypes in gametes from females, normal males and mutant males, we
obtain the following recursion equations for the variables of the model.

femaleFreq[[2]] . .
eqgXAF = femaleFreq[[1l]] + 2 // FullSimplify

-(1+ha Sa,) Xy +Xap (-1 +8a (-ha, +2 (-1 +ha ) Xp,))
-2+2sp, (-Xa, Xa, +hay, (-Xa, +Xa, (-1+2Xp,)))

egXAM = normalMaleFreq[[1]] +
(1 -ra) normalMaleFreq[[2]] + ra normalMaleFreq[[3]] // FullSimplify

-ra (L+hp, S5, ) Ya+Xa, ((-1+1a) (1+hy, sa,) + (-1+hy ) Sa, Ya)
-1+, (-Xa, Ya+hy, (-Ya+Xa, (-1+2Y,)))

eqYA = normalMaleFreq[[1l]] +
r, normalMaleFreq[[2]] + (1 -r,) normalMaleFreq[[3]] // FullSimplify

(-1 +8p, (hy, (-1 +X5 ) -Xp)) Ya+Ta (L+hy s5,) (-%Xp, +Ya)
-l+sp, (-Xa, Ya+hy, (-Ya+Xy (-1+2Y,)))

mutantMaleFreq [[1]] + % mutantMaleFreq[[2]]
eqgxA = // FullSimplify
Z‘,i:l mutantMaleFreq[[i]]

-(1+ha, Sa,) Xa+ (-1+8a, (-2%X3+hay, (-1+2X%a))) Xa,
-2+2sp, (-XaXp, +hy, (-Xa+ (-1 +2%) Xa,))

The dynamics of the mutant masculinizing allele can be described by the ratio of its frequency in successive generations.
This ratio is:

Zi_l mutantMaleFreq[[i]]
Ry = — // FullSimplify
€y

-l+sp, (-XaZXa, +hy, (-Xa+ (-1 +2%) Xa,))
-l+sp, (-Xp, Ya+hy, (-Ya+Xa, (-1+2Y,)))

Thus to determine how the mutation evolves we now need expressions for the genotype frequencies (Xy,,, Y4 and xy4,, ) that
appear in that expression. When the modifier is rare, the relative sizes of these frequencies converge towards an equilibrium.
Below we calculate that equilibrium and use it to solve for R4 under two different assumptions about the relative strengths of
recombination and selection.
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Weak selection

To make the analysis tractable, we now assume that selection is weak. Specifically, we assume that selection coefficients are
of the order of €, with €, << 1. It will be convenient to use the following substitution:

weakSelectionApproximation = {s,, - €, §,, +€> Espy 1 Sap > €5 S + e2 Esap i

Throughout this workbook, the coefficients & represent higher-order terms. Our goal here will be to develop expressions for
the dynamics of the masculinizing mutation that are second order in the selection coefficients (that is, O[€2]).

Approximation for weak linkage (ry > €5)

The recursion equations suggest that the difference between any two variables of our model is O[g,] when selection is weak
relative to recombination (r4 > €). To exploit this situation, we apply the following change of variables:

1
= 2
pASubs = {XAF - P, + 3 €s APy, ,, * E€sDPy, . tE Exny v

1

= 2
Xay = P, + 3 € APy, ,, ~ €sDPy, ., *Es Ex,,, 1

}

= 2
Y, > p, - € Apn(x,y) - €5 ApnmlxM + €5 &y, /

1
Xa > p, + ? €s Aps(x,y, - €g Apn(xF,,KM

}

2 0
Lt 2 €, Apn(x,xm +€; &, } i

Here, p, denotes the average frequency of allele 1 at locus A, and Ap, , Ap, and Ap, are respectively the differ-
(x.y} (XF Xpr ) {x, Xim }

ences in the frequencies of allele 1 between X- and Y-chromosomes, between X-chromosomes inherited from the female
(mother) and male (father), and between X-chromosomes in males with the novel and original sex determination factors.
Using these variables, the approximate expression for R, that includes terms up to second order in the selection coefficient is:

approxRA = Series[R, /. weakSelectionApproximation /. pASubs, {e€s, 0, 2}] // Simplify

2 ~
1- 3 ((3 DRy o * 2ApA(‘ny)) (-Pa +ha, (-1+2P,)) 8a, ) €2 +0[es]?

We see that the dynamics of the modifier depends on three types of quantities: the average allele frequency at the sex-antago-
nistic locus (p, ), differences in allele frequencies between different kinds of chromosomes (Ap A and Ap Ao )), and the

selection parameters (€5, 8a,, and h,, ). The allele frequency differences themselves depend on the selection parameters,
and we will now find expressions for them

The recursion for Ap, ~is:
XY}
eqApAXY =

Series[ (2 eqXAF + eqXAM - eq¥A) - (2X,, + Xa, - Ya) /. weakSelectionApproximation /.
pASubs, {e;, 0, 1}] // Simplify

4 I N
(-5 78 (28Py,, +38P,, . ) +2 (-1+D,) By (-By +hay (-1+2B,)) 8, | €5 +0[es]”

That recursion depends in turn on Ap A ? whose recursion is:
FXm
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eqApAXfXm = Series|[ (eqXAF - eqXAM) - (X, - X,,) /. weakSelectionApproximation /. pASubs,

{ESI ol 1]’] // simplify

4
-3 APA(~XFVXM) * Ia ? APAKXVY) +2 APAKXFVXM) *

(-1+P,) Py (hay (-1+2p,) 8, +ha, 8, +Py (~8a, + (1-2hy,) 8a,)) | €5 +0[€s]?

When the modifier is rare (or absent), Ap A and Ap Ao will reach equilibrium values:

ApASubsl =
Solve[{qupAXY == 0, eqgApAXfXm == 0}, {Apn(x,n ’ ApA(XF,xM) }] // Flatten // FullSimplify
(-1+p,) Py (-(-3+4ra) (-py+ha, (-1+2p,)) 8, +2ra (P, +ha, (-1+2p,)) 8a,)
{opy, , ~ ,
{X,Y} 4rA
1 _ _ _ _ ~ _ _ ~
(-1+P,) By (2 (-Py +ha, (-1+2P,)) 8a, - (-P, +ha, (-1+25,)) SAM)}

ApAng - 3

rXy )
The remaining allele frequency difference that appears in the expression for R, above is Ap Ax) Its recursion is
eqApAxXm =
Series[ (eqXAM - eqxA) - (Xa, - Xa) /. weakSelectionApproximation /. pASubs, {es, 0, 1}] //
Simplify

2

2
ApA(‘x'XM) + ApA(‘XF'XM/ -3 ra (2 ApAkX,Y, + 3 ApA(‘XF'XM) )) €s +0[€g]

which has the non-trivial equilibrium
ApASubs2 = Solve[eqApAxXm = 0, AP, . | 77/ Flatten // FullSimplify
*/Xu

4
{ApAgx,xM; - ? Ia ApAgx,Y; *(-1+271a) ApAng,xM, }
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Substituting in the earlier results for Ap A and Ap A gives
: Xy

ApASubs2 = ApASubs2 /. ApASubsl // Simplify

1 ~ ~ _ ~ ~
{opy . 25 (-1+Py) Py (hay (-1+2D,) 8, ~ha, 8a, ~ D, (8, + (1-2ha,) 8a,)) }

We now substitute the results for Ap A and Ap Ax ) into our early expression for R4 to get
4 Xy

approxRA = approxRA /. ApASubsl /. ApASubs2 // FullSimplify

1+ 3= ((-1+Ps) Py (-Py +ha, (-1+2P,)) Sa,
A

((-3+21a) (-, +hay (-1+2P,)) 8a, —~4Ta (-P, +ha, (-1+2Pp,)) 8s,) €2) +0[es]’

The results to this point are expressed in terms of P, , the average allele frequency at the sexually-antagonistic locus. Polymor-
phism at locus A can be maintained by selection under certain combinations of parameters (Rice 1987). We will now find
expressions for p, assuming that polymorphism is maintained by selection. Intuitively, we expect that the results above also
apply more generally, when other forces besides selection maintain polymorphism at A. More specifically, we expect the
previous results expressed in terms of P, to be a valid approximation when mutation and migration maintain the polymor-
phism so long as the mutation and migration rates are small relative to the selection coefficients.

When the mutation is rare, it has a negligible effect on the average allele frequency p,. The rate of change in that frequency
is, to first order in the selection coefficients, then

eqavgpA =
Series[ (2 eqXAF + eqXAM + eq¥A) - (2Xp, + Xa, + Ya) /. weakSelectionApproximation /.
pPASubs, {es, 0, 1}]1/4// Simplify

1

5 (-1+P,) Py (hay (-1+2p,) 8a, ~ha, 8ay P, (S, + (1 -2hy, ) 8a,)) € +0[eg]?

The (nontrivial) equilibrium for the average frequency of allele 1 at locus A when the mutant is rare is:

avgpASubs = Solve[eqavgpA == 0, p,][[3]] // FullSimplify

_ hAF Sap + hAM Say
{pa- (C1+2hs, ) 8a, + (-1+2hy,) 8a, J

This result can be used to simplify the expression for the geometric growth rate. First, we define the fitness differentials o4,
and 0 4, , which measures the intensity of selection in males and females, S,, which measures the degree of sexual conflict,
L4, which measures how closely locus A is linked to locus Y, and V4, the genetic variance at locus A

simpleSubs = { 05, » (P, +ha, (1-2P,)) € 8a,
On, = (P, +ha, (1-2P,)) €5 8a,,
Sy, > 0a, (Ony -0a,) /2,
Ly > (1-2r,) /ra,
Va-> DB, (1-B,)};
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We now observe that the average selection differential (074, + 04, )/2 vanishes at population-genetic equilibrium

(Oa, +0a.) /2 /. simpleSubs /. avgpASubs // FullSimplify

0

Using this fact, the geometric rate of increase R4 can be written as
RASimple = 1-V, L, S,;
We check that this expression is consistent with our earlier result:

checkResult = approxRA - RASimple //. simpleSubs /. avgpASubs // FullSimplify

Oles]*

Approximation for tight linkage (rs = O [€s])

If the rate of recombination between the loci Y and A is of the same order of magnitude as the selection coefficients, we can
no longer assume the difference between the average allele frequencies on the X- and Y-chromosome to be small. We
therefore use a different change of variables.

pASubsStrongLinkage = {XAF - Pa; + €s Apn(x w0 !
F r &M

= 2
Xy > Pag ~2€s 8P, Ya> Pays Xao Pa, €8P, s Ta € Fa+el iyl

Here, p,, and p,, denote the (average) frequencies of the allele 1 at locus A on X- and Y-chromosomes, when the mutation
is absent or rare. Our approximation for strong linkage is highly accurate for r4 = O[¢;], and performs well even in cases
where linkage is tighter than that (e.g., r4 = O[ef], or ry = 0; see Section 4).

Under this change of variables, the geometric growth rate R4 is approximated as

approxRA =
Series[R, /. weakSelectionApproximation /. pASubsStrongLinkage, {e;, 0, 1}] // Simplify

1- (-Ppay +ha, (-1+2pa,)) (Pay ~Pay) Say €5 +0[E€5]7

As before, the dynamics of the modifier depends on the allele frequencies at the sex-antagonistic locus (pa, and py, ), the
selection parameters (€5, 8a,, and h,, ), and differences in allele frequencies between different kinds of chromosomes. In
this case, the relevant allele frequency difference is that between the X and Y chromosomes. This quantity changes accord-
ing to the recursion

eqApAXY =
Series[ (2 eqXAF + eqXAM - 3 eqYA) - (2X,, + Xa, -3 ¥5) /. weakSelectionApproximation /.
pASubsStrongLinkage, {e€s, 0, 1}] // FullSimplify

(-4 (Pay ~Pay) Ta+2 (-1 +Da, ) Pay, (-Pay +ha, (-1 +2pa,)) S, +
(-Pay (2 +Pay —3Pay) Pay, +ha, (3 (—1+PAY)PAY+P§X (=1+2pa, ) +Pay (1+4PAY—6P§Y)))
gAM)es"'O[est
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The rate of change of the average allele frequency p, (P, = (3 pa, + pa,)/4) is, to first order in the selection coefficients,
given by

eqavgpA =

Series[ (2 eqXAF + eqXAM + eq¥A) - (2Xa, + Xa, + Ya) /. weakSelectionApproximation /.
pASubsStrongLinkage, {€s, 0, 1}] /4 // FullSimplify

1 ~
7 (2 (=1+pay) Pay (~Pay +ha (~1+2pay)) Sa; +

(-Pay Pay, (-2 +Pay +Pay) +hay (-1 +Pay +Pay) (-Pay +Pay (-1 +2pPa,))) 8a,) Es +O[€sJ2

To simplify these two equations, we define the genetic variances V4, = pa, (1 — pa,) and V4, = ps, (1 — ps,) and the
selection differentials o4, and o4, .

simpleSubs = {oa, »2/3 (Pay +ha, (1-2pa,)) €5 8a, + (Pa, +ha, (1-2pa,)) € 8a, /3,
Oay = (Pay +ha, (1-2pa)) € §AM 1’
Vay = (1-Pay) Payg s
Vay @ (1 -Pay) Pa, }7
Using these coefficients, we can rewrite eqApAXY.
eqApAXYSimple = -4 (Pa, - Pa,) Fa + 3 Va, Oay - 3 Va, Oa,
-4 (Pay —Pay) Ta +3Va, Oay —3Vay Oay
which we check to be consistent with the earlier expression:
checkResult = eqApAXYSimple - eqApAXY /. simpleSubs /. {r, > €5 ¥a} // Simplify
Oles]®
From the simplified expression eqApAXYSimple, it follows that, at equilibrium,

Vﬂy Oa, - Va, Oay

eqApAXYEquilibrium = py, - pa, =3 "
ra

3 (~Vay Ony +Va, Ony)
4 r,

~Pay +Pay ==

Similarly, the average allele frequency is at equilibrium when

eqavgpAsimple = 3V,, Oy +Vy, Op, =0

3Va, Oag +Va, Oa, == 0

This equation allows us to express the genetic variation at the X- and Y-chromosomes in terms of the average variance
Vi=2Va + 1V

variances = Solve[{eqavgpAsimple, Vp = (3Vy, + Va,) / 4}, {Va,, Va,}] // Flatten

4 Va Oa,

_ 4Vaon, M}
3 (Oay — Oay )

{VAX - -
Ony — Oay

r Va, —
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such that the geometric rate of increase R4 can now be written as

3 (-Va, Oa, +Vu, Oa, )
RASimple = 1 - 0, o Zx T M /. variances // Simplify
ra

1 4 Va Ony On,
Ta (Oay — Oay )
As for the weak-linkage approximation, the geometric growth rate can be written as R4 = 1 — V4 Sy L,. In fact, by choosing

2
Thy Tax 1-2rx

Sa =4 V= 3 pay (L= pa)+ 5 pay (1= pay) and Ly = 12
result when r,4 > €, and to the strong linkage result when r, = Olg;].

, this expression converges to the weak linkage

2 - Effect of a sex-antagonistic locus on the autosome

In the second submodel we ignore the presence of the sexually antagonistic locus on the sex chromosome. Hence, we keep
track only of the loci Y, y and a. As in the four-locus model, locus a is a sexually-antagonistic locus located on an autosome
together with locus y. Again, the original sex determination factor segregates at locus Y, and a small fraction €, < 1 of the
individuals carries a novel masculinizing sex determination allele at locus y.

This time, three additional variables are needed to describe the genetic state of the population. The three variables measure
the frequency of the allele 1 on locus a in female or male gametes with a particular combination of sex determination alleles.
They are defined as follows: U,, represents the frequency of allele 1 at locus a in female gametes, U,,, denotes that fre-
quency in the gametes of normal males, and u, corresponds to the frequency of allele 1 at locus @ in male gametes that also
carry the novel mutant sex determination factor.

Recursion equations

To derive the recursions that describe how the population evolves, we start by calculating the frequencies of genotypes at
locus a in normal male and female zygotes, and in mutant male zygotes. We assume that mating is random. Genotype
frequencies are listed in the order {11, 10, 01, 00}, where the first and second numbers in a genotype represent the alleles
inherited from the mother or the father, respectively. In individuals homozygous for the null allele at locus y (normal males
and females), the genotype classes 10 and 01 can be grouped together.

When the mutation is rare, the frequencies of the genotypes in zygotes that do not carry the mutation can be calculated
approximately by neglecting the mutation:

normalZygoteFreq = {U,, U,,, U, (1-U,,) +Us, (1-Uy ), (1-Ua,) (1-Us)};

mutantMaleZygoteFreq = {€y Ua, Us,, €y Ua, (1 -Uas, ), €y Ua, (1-Us ), €y (1-uy,) (1-Us)};
Next, we define the genotype fitness values for the different kinds of individuals.

femaleFitness = {l+s,., 1+ h, s.., 1};

normalMaleFitness = {l+s,,, 1+ h,, s,,, 1};

mutantMaleFitness = {l+s,,, 1+ h,, s,,, 1+ h,, s,,, 1};

A genotype's frequency in adults is given by the product of its frequency in zygotes and its fitness, normalized by the mean
fitness. Since the frequency of the mutant allele is low, we may neglect the impact of mutant individuals on the mean fitness.
Thus we have:
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normalzZygoteFreq * femaleFitness
femaleFreq =

Wr

{ (l"'saF)UaF Ua, (l"'haF SaF) (UaF (l_UaM) + (l_UaF)UaM) (l_UaF) (l_UaM) }

WF Wr Wr

normalZygoteFreq * normalMaleFitness

normalMaleFreq =
Wy
{(l"'saM)UaFUaM (l+haMSaM) (Uap (l_UaM)"'(l_UaF)UaM) (l_UaF) (l_UaM)}
Wy ! Wy ! W
mutantMaleZygoteFreq » mutantMaleFitness
mutantMaleFreq =
Wy
{(l+s‘.,\M)u\.,\MU\.,\F €y (1+hg, s,,) (1-uy,) Uy &
Wi ! Wyt !
(1 +hg, s5,) ua, (1-Us,) €y (l—uaM)(l—UaF)ey}
WM ! WM

The mean fitnesses in females and males are:

3
Wr = Z (normalZygoteFreq * femaleFitness) [[i]]

i=1
(l_UaF) (1_UaM) + (l+saF)UaF UaM + (1+haF saF) (UaF (1_UaM) + (l_UaF)UaM)
3

Wy = Z (normalZygoteFreq * normalMaleFitness) [[1i]]

i=1
(1-Ug) (1-Ug, ) + (1+84,) Uap Uy, + (1 +hy, S4,) (Uay (L-Uy, ) + (1 -Uy ) Uyy)

By calculating the frequencies of the different haplotypes in gametes from females, normal males and mutant males, we
obtain the following recursion equations for the variables of the model.

femaleFreq[[2]] . .
eqUaF = femaleFreq[[1]] + 2 // FullSimplify

-(1+hy Sap) Usy +Uqs (-1+8,, (-hy +2 (-1+h,, ) Uy,,))
-2+2s,, (-Us, U,, +hy, (-Uy, +U, (-1+270U,,)))

aM

normalMaleFreq[[2]] . .
eqUaM = normalMaleFreq[[1l]] + 2 // FullSimplify

-(1+hy, Sa) Usy +Us (-1+8,, (-h
-2+2s,, (-U, U,, +h,, (-U

aM+2 (_1+haM)UaM))
+Us (-1+20,,)))

ay
equaM = (mutantMaleFreq[[1]] + r, mutantMaleFreq[[2]] + (1 -r,) mutantMaleFreq[[3]]) /

4
ZmutantMaleFreq[ [1i]] // FullSimplify

i=1

-Ta (1+hg, Sa,) Usy, +Uq, ((-1+1,) (1+hy, 84,) + (-1+hy,) Sa, Uap)
-l+s8,, (-us Uy +hy, (-Uy +uy, (-1+20U,)))
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The dynamics of the mutant masculinizing allele can be described by the ratio of its frequency in successive generations.
This ratio is:

Ziﬂ mutantMaleFreq[[i]]

R, = // FullSimplify
€y

_1+saM (_uaM UaF +haM (_UaF +uaM (_1+2Uap))>
_1+saM (_UaF UaM +haM (_U +Ua1= (_1+2UaM))>

am

As in section (1), we now need expressions for the genotype frequencies (U,,, , U,, and u,) to determine how the mutation
evolves . When the modifier is rare, the relative sizes of these frequencies converge towards an equilibrium. Below we
calculate that equilibrium and use it to solve for R, under two different assumptions about the relative strengths of recombina-
tion and selection.

Weak selection

To make the analysis tractable, we now assume that selection is weak. Specifically, we assume that selection coefficients are
of the order of €, with €, << 1. It will be convenient to use the following substitution:

weakSelectionApproximation =
Join[weakSelectionApproximation , {s,, - €; 8., + €} s, s Sa > €c 8a, +€2 &, }1;

Approximation for weak linkage (ry > €5)

The recursion equations suggest that the difference between any two variables of our model is O[g,] when selection is weak
relative to recombination. To exploit this situation, we apply the following change of variables:

pasSubs = {U,, » B, +es BPaiy o /2 +ek &,

U,, » P, - € Ap /2 +e§§uAM,

a{up Uy}

- 2 .
U,, @ P, - €s Apa("F,“M) /2 + €g Apa(u, + €5 ‘591...2 },

Um }

Here, P, denotes the average frequency of allele 1 at locus a, and Apaw and Apal ;. measure respectively frequency
Uyt

FUm)
differences between chromosomes inherited from the father and the mother, and between males with the original and novel

sex determination factor.

Our strategy is again to find expressions for the allele frequency differences (Apaw . and Ap

be responsible for the maintenance of polymorphism at the autosomal sex-antagonistic locus, but, as before, we will assume
that polymorphism at locus a is maintained by selection.

)). Many processes could

ulu,UM
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At equilibrium, the new variables satisfy the following equations

eqavgpa = Series|[(eqUaF + eqUaM) - (U,, + U,,) /. weakSelectionApproximation /. paSubs,

{€s,0,1}] =0 7// simplify
2

(_1+pa) pa (hap (_1+2pa) gap _haM gam _pa (gap + (1_2haM) gaM)) €s +O[€SJ

eqApaUfUm = Series|[ (eqUaF - eqUaM) - (U,, - U,,) /. weakSelectionApproximation /. paSubs,
{esl ol 1]‘] =0 // simplify

(‘Apa(‘UF'UM) + (_1 +pa) pa (haF (_1 +2pa) gaF +haM gaM +pa (_gaF + (l_ZhaM) gaM))> €s +O[€s}2 -

egqApaulm = Series[(equaM - eqUaM) - (u,, - U,,) /. weakSelectionApproximation /. paSubs,
{€s, 0, 1}] =0 // FullSimplify
1 2
—Ya AP +?(_1+2ra)AP €s +0[eg]” =0

a{u, Uy} &{Ur , Uy}

which have as non-trivial solutions

avgpaSubs = Solve[eqavgpa, p,] [[3]]

h,, 8., +h,, 84,

B s 2 la _
{pa -8, +2h,, 8, -8,, +2h,, §,, }

ApaSubs = Solve[{quanfUm, egApaulm}, {Apa(" wo ! Apa( . )}] // FullSimplify // Flatten
F UM u,Um

(s (-1+2r,) (-1+p,) P, ((-P, +hay (-1+2P,)) 8y - (-P, +ha, (-1+2D,)) 8a)
p - ’
afu, Uy} 2r,

D,y o, @ (“1+Py) By (hay (-1+2P,) 8ay +ha, Say, +D, (~8a + (1-2hsy) 8a,)) |

The final step is to approximate the geometric rate of increase for weak selection, and to substitute the equilibrium values for

Ap ) and Ap

Qg Uy [
approxRa =
Series[R, /. weakSelectionApproximation /. paSubs, {e;, 0, 2}] /. ApaSubs // Simplify

1

1+
2r,
Say

((-1+2r.) (-1+p,) p, (hy (1-2p,) +B,)
((-P, +hay (-1+2P,)) 8a - (-P, +hay (-1+2p,)) 8,,) €2) +0[es]’

To simplify this expression, we define the fitness differentials ¢,, and o, , which measures the intensity of selection in
males and females, S,, which measures the degree of sexual conflict, L,, which measures how closely locus a is linked to

locus y, and V,, the genetic variance at locus a

simpleSubs = { 0., > (P, +ha, (1-2P,)) € Sa,,
Oap = (B, +ha, (1-2D,)) € 8a,
sa_)aaM (caM 'aaF)/zl
L,>(1-2r,) /r,,
Va-» Db, (1-5,)};
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The geometric rate of increase R, can now be written as
RaSimple = 1+V, L, S;;
We check that this expression is consistent with our earlier result

checkResult = approxRa - RaSimple //. simpleSubs /. avgpaSubs // FullSimplify

Oles]®
Approximation for tight linkage (r; = O [es])

If the rate of recombination between the loci y and a is of the same order of magnitude as the selection coefficients, we can
no longer assume the difference between the average allele frequencies in normal and mutant males to be small. We therefore
use a different change of variables.

paSubsStrongLinkage = {U, - B, +€: AP /2 +ée? Eu,, o

a{up , Uy}
U p A 2+¢€l

ay ™ Pa'es P + €5 §UEMI
Uy, - Pay ’

= 2
r, > €5 ¥, + €5 §,a};

a{up , Uy}

Under this change of variables, we obtain a new recursion equation for the difference p, — p,, , where p,, is the frequency of
allele 1 at locus a in males that carry the sex determination mutation at locus y.

egApaulUm = Series|[
((eqUaF + eqUaM) /2 -equaM) - ((Ua, +Us. ) /2-u,,) /.weakSelectionApproximation /.
paSubsStrongLinkage, {€s, 0, 1}] // FullSimplify

1 _ _ ~ o _ _ ~

5 (-2 Pi, (-P, +hay (-1+2P,)) 8ay +2Pa, (Ta+ (P, +hay (-1+2p,)) 8q,) +

P, (-2%a+ (-1+p,) ((-P, +hay (-1+2P,)) 8ay + (-P, +ha, (-1+2Pp,)) 8,,))) €5 +0[€Es]?

Using the previous definitions of the fitness differentials o, and o, , this expression is rewritten to show that, at population
genetic equilibrium

. _ B Va, Oay
eqApauUmSimple = p_ - pay == r—;
a

The geometric growth rate R, is approximated as

approxRa =
Series[R, /. weakSelectionApproximation /. paSubsStrongLinkage, {e€s, 0, 1}] // Simplify

2

1-(pPay -P,) (-P, +hay (-1+2p,)) 8ay €5 +O0[Es]

In view of the previously obtained equilibrium condition for the allele frequency difference p, — p,, , the geometric growth
rate can now be written as

2
V., o2,

RaSimple = 1+

~e

Ya

As for the weak-linkage approximation, the growth rate can be written as R, =1-V, S, L,. In fact, by choosing

Sq = %O'HM (o —0ar)s Va = pa,(1 = pa,) and Ly = l_rﬁ, this expression converges to the weak linkage result when
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r, > €, and to the strong linkage result when r, = O[e,]. As illustrated in Section (4), the approximation is accurate also
when the recombination rate on the autosome is (vanishingly) small relative to the strength of selection (r, < €).

3 - Combining the effects of loci A and a

As explained in the introduction, the sexually antagonistic loci A and a have additive effects on the dynamics of the masculin-
izing mutation at locus y when selection is weak. To find the relative rate of increase of the frequency of the modifier for the
four-locus model described in the text, we may combine the results of section (1) and (2) by multiplying the geometric
growth rates of the two submodels. In other words, the change of the allele frequency of the mutant sex determination allele
is given by

Ap, = (1 -8SaLaVa) (1+8SaLaVa) Py -Pyi

The relative rate of increase of the mutant allele, A, is defined as Apy / py. We calculate A up to first order in S, and S, (i.e.,
for weak selection).

A:Nomal[Series[(Apy/py /. {SA-) €s gnr S, > €5 ga})r {es, O, 1]‘]] /.
{ga - sa /esl gn - SA/GS} // simplify

Lo SaVa —La Sa Va

which is Equation(1) in the text.
4 - Complete linkage

In deriving the results for tight linkage, we assumed that the recombination rates were of the same order of magnitude as the
selection coefficients. We now study the performance of our approximation when linkage is tighter than that (0 < r4 < € or
0 <r, < €) or when recombination on the sex chromosomes or the autosomes is absent altogether. The linkage terms L,
and L, diverge to infinity under these conditions, whereas the genetic variances V, and V, approach zero. It is not immedi-
ately clear how these two processes combine, and to what extent our results are accurate in the limit of very low recombina-
tion rates.

To address these issues, we recalculate the geometric growth rates R4 and R, for the two submodels under the assumption
that recombination on the sex chromosome or the autosome is fully absent. We then study to what extent our previous
approximation converges to these limit values as we decrease the recombination rate.

No recombination on the sex chromosomes (r4 = 0)

We start with the first submodel, and define the following procedure to obtain weak-selection approximations that are valid
in the absence of recombination between the loci Y and A.
completeLinkage[x_] :=
Series[x /. {ra » 0} /. weakSelectionApproximation /. pASubsStrongLinkage, {es, 0, 1}] /.

{Sa, = Sa, /€s, Sa, = Sa, /€s} // Normal // FullSimplify

The following recursions for the sexually-antagonistic-allele frequencies result from applying this procedure.
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2 eqXAF + eqXAM - (2 X,, +X,, )

egpAX = completeLinkage[ 3 ]

1
5 (-1+pay) Pay (2 (-Pa, +hay (-1+2Pa,)) Sap + (-Pa, +ha, (-1+2pa,)) Sa,)

egpAY = completeLinkage[eqYA - Y,]
(-Pay +ha, (-1+2pa,)) (-1 +DPay,) Pay Say
The expression for the geometric growth rate simplifies to
eqRA = completeLinkage [R, ]
1-(-Pay +hay, (-1+2pPa)) (Pay ~Pay) Say
The recursions for p4, and p4, have seven different equilibrium solutions

Solve[{eqpAX == 0, eqgpAY == 0}, {Pa, s Pa, }]

{{Pay >0, Pa, >0}, {Pay >0, Pa, > 1}, {Pa, > 1, Pa, >0}, {Pa, > 1, Pa, > 1},

-2 ha, Sa, - ha, Sa, -2 hp, Sa, - Sa, + ha, Say,
{pAX%_ 2 (-1+2hy,) sa; ’pAY%O}’{pAX%_ 2 (-1+2hy, ) sa; ’pAY%l}’
2h, sSa, —2hy, Sa, +hy, Sa, -2h2 s h
{pAY - R lh Be The A; = By R r Pay = -1 A2Mh }}
(=1 +2hy,)° s, + Ay

The first and the fourth equilibrium are stable only under parameter conditions that do not allow for the maintenance of
sex-antagonistic fitness variation, and are therefore irrelevant. The fifth and the sixth equilibrium can be stable under a
limited range of biologically relevant parameter conditions, but this requires a large difference between the dominance
coefficients h4, and hs,. We will ignore these equilibria for the purpose of the present analysis. The seventh equilibrium

must be discarded altogether, since it is unstable or features biologically impossible allele frequencies. What remains are the
following two equilibria:

equilibriuml = {p,, - 0, pa, » 1};
equilibrium2 = {pa, » 1, pa, » 0};

Standard stability analysis yields the eigenvalues of these two equilibria

jacobian = {{D[eqpAX, ps, ] + 1, D[eqpAX, pa, 1}, {D[edpAY, p,, ], D[eqgpAY, p,, ] +1}};

eigenvaluesl = Eigenvalues[jacobian /. equilibriuml]

1
{1-ha, sa, 1+ 3 (2hy, Sap — (-1 +hy,) sp,) }

eigenvalues2 = Eigenvalues[jacobian /. equilibrium2]

1

{1-(-1+ha,) sa,, 1+ 3 (2 (-1+ha) sa, —h, Say) |
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In what follows, we concentrate on cases where the fitness of a heterozygote is between the two homozygote fitness values.

parameterConstraints = 0< hy, < 1 &% 0< hy <1
0<hy, <1&&0<h, <1
The equilibrium p4, =1, ps, = 0is stable if
Reduce[-1 < Re[eigenvaluesl[[1]]] <1 && -1 < Re[eigenvaluesl[[2]]] <1 &&

parameterConstraints, {sa,, Sa, }, Reals] // FullSimplify

3 _(-Llehy) s,

O0<hy <1&&0<hy <1&&0<s,, <
F M M 2hAF

. 2h
ie.,if 0<sa, <—5a, ﬁ
M

Under these conditions, the geometric rate of increase of the novel sex-determining allele is given by

eqRA /. equilibriuml

1 -h,, sa,
The other equilibrium (ps, =0, p4, = 1) is stable if

Reduce[-1 < Re[eigenvalues2[[1]]] <1 && -1 < Re[eigenvalues2[[2]]] <1 &&
parameterConstraints, {s,,, Sa }, Reals] // FullSimplify

6 - hy, sa,

2 (-1+ha) -0

0 <hy <1&&0<hy, <1&& < 8p, <0&& < Sap +

-1+ ha, -1+ h,,

2(1-ha,.)
hAM :

i.e., if 0< —SAy < SAp
When these conditions hold, the geometric rate of increase is given by
eqRA /. equilibrium2
1-(-1+ha,) sa,

No recombination on the autosomes (r, =0)

To study the second submodel in the limit of no recombination and weak selection, we define the following procedure
completeLinkage[x_] :=
Series[x /. {r, » 0} /. weakSelectionApproximation /. paSubsStrongLinkage, {e;, O, 1}] /.
{Ss » Sa, /€5, Sa > S,, / €5} // Normal // FullSimplify
and apply it to the recursion for the sexually-antagonistic-allele frequency on the neo-Y that we derived in Section (2)
egpay = completeLinkage[equaM - Pa, ]

(_1+pay) pay saM (_pa +haM (_1+2pa))

This recursion has two simple equilibrium solutions
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Solve[egpay == 0, Pa, ]
{{Pay » 0}, {Pa, »1}}
The first one is stable when s,,, < 0, and then the geometric rate of increase of the neo-Y is given by

completeLinkage[R, ] /. solutions[[1]] // Simplify

l+sa P, (-P, +hy (-1+2Pp,))
The second equilibrium is stable when s,,, > 0. In that case, the geometric rate of increase of the neo-Y is given by

completeLinkage[R, ] /. solutions[[2]] // Simplify

l+sa (-1+p,) (-P,+hy, (-1+2p,))
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Simulation results

We evaluated Equation (1) in the main text for low values of the recombination rates, and compared the results to the limiting
values calculated in this section. As shown in Figure 1, our main result agrees well with exact numerical simulations, even
for very low recombination rates (r,, r, < €;). Moreover, the exponential growth rates calculated from Equation (1) and the
numerical simulation results converge smoothly to the values that are expected in the absence of recombination.

0.02
Cr, =008 a
0.01 |-
4] I
E C
g OF
© _
-0.01 |-
_0_02 _IIIII 1 IIIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 IIIIIIII 1 1 1
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A
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-0.01
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o
ERES EARa REEE RETA

_0-02 LLLl 1 L IIIIIII 1 | IIIIIII 1 1 IIIIIII L Il IIIIIII L Ll
0.00001 0.0001 0.001 0.01 0.1

r

a

Figure 1 | Exponential growth rates at low values of the recombination coefficients. Solid lines indicate values for the
exponential rate of increase of the neo-Y calculated from Equation (1) in the main text. The filled circles show the results of
exact numerical simulations. For low values of the recombination rates, the exponential growth rates are expected to con-
verge to the limit values indicated by the dashed lines (these represent the no-recombination limits calculated in Section (4)
of the supplementary material). In panel a, we vary the recombination rate at the ancestral sex chromosome, while keeping r,
fixed at 0.08. In panel b, we vary the recombination rate between the autosomal loci, while r4 is held constant at 0.12. The
selection and dominance coefficients are as in Figure 1 in the main text.
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5 - Simulation results for a selection of alternative genetic
scenarios

In this section we present simulation results for a number of genetic scenarios that deviate from our original model assump-
tions. In particular, we explore the effects of alternative types of genetic interactions between the sex-determination factors.

Partial dominance and incomplete penetrance

The situation analyzed in the main text is one where the novel sex-determination factor is a completely dominant and fully
penetrant mutation. Here, we investigate the effects of partial dominance (Figure 2) and incomplete penetrance (Figure 3).
Partial dominance and incomplete penetrance shift the invasion boundary, such that invasion of the mutant sex allele requires
a lower recombination rate r, or a higher level of sexual antagonism S, at the autosomal sex-antagonistic locus. The magni-
tude of this effect increases smoothly as we deviate more and more from our original model assumptions, i.e., as we shift
from complete dominance to additive interactions (Figure 2), or from high to low penetrance (Figure 3). More importantly,
however, neither partial dominance nor incomplete penetrance fully preclude invasion of novel sex determination factors,
supporting the robustness of our main results.
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Figure 2 | Partial dominance. (a) Other than in the main text, we here assume that the novel sex determining factor is a
partially dominant masculinizing mutation. Only a fraction h, of the zygotes that carry a single copy of the novel sex determin-
ing allele (indicated as m in the genotype labels on the horizontal axis) develop as males; zygotes that carry two copies of the
mutant allele (genotype XXmm) develop as males with certainty. (b) The stacked panels show invasion and fixation bound-
aries for the neo-Y based on numerical simulations for six values of %, ranging from 1.0 (complete dominance) to 0.5
(additive interaction between alleles). The labeling of the different regions (shown only for the last panel) corresponds to that
used in Figure 3 of the main text. As h, decreases, higher levels of sexual antagonism at the autosomal sex-antagonistic locus
are required in order for the neo-Y to invade and to replace the ancestral Y (region 2 becomes smaller as h, decreases).
Conversely, the conditions for stability of the ancestral sex-determination system (region 1) or bistability (3) become more
favorable. These effects are due to the fact that partial dominance reduces the efficiency of selection on the mutant allele in
heterozygotes. Initially, when its frequency is still low, the novel sex-determination factor will almost exclusively be found in
heterozygotes. Invasion of the neo-Y thus relies on stronger sexual antagonism (or stronger linkage) on the neo-Y to compen-
sate for the reduced exposure to selection. Results are for symmetrical parameter conditions: s% = —sf, M = —s,

W =hM =0.6, b, = hf = 0.4, and for different degrees of linkage: r4 = r, = 0.05 (dots) and r4 = r, = 0.25 (lines). The
invasion and fixation boundaries are virtually overlapping for the two different sets of values for the recombination rates that
we considered.
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Figure 3 | Incomplete penetrance. (a) Other than in the main text, we here assume that the novel sex determining factor is a
dominant masculinizing mutation with incomplete penetrance. Only a fraction P, of the zygotes that carry one or more
copies of the novel sex determining allele (indicated as m in the genotype labels on the horizontal axis) develop as males. (b)
The stacked panels show invasion and fixation boundaries for the neo-Y based on numerical simulations for six values of P,
ranging from 1.0 (complete penetrance) to 0.5 (random sex determination). The labeling of the different regions corresponds
to that used in Figure 3 of the main text. As P, decreases, higher levels of sexual antagonism at the autosomal sex-antagonis-
tic locus are required in order for the neo-Y to invade and to replace the ancestral Y. Below a certain degree of penetrance
(roughly at P, = 0.64), the neo-Y can still invade for a reasonable range of selection coefficients but it can never fully replace
the ancestral Y, leading to the establishment of a protected polymorphism of sex factors (region 4). The possibility of pro-
tected polymorphism arises already at lower values of P,. If the neo-Y is to replace the ancestral Y, it must attain a relatively
high overall frequency in order to maintain a 1:1 sex ratio (as P, approaches 0.5, the neo-Y must approach fixation in both
sexes). At low frequency of the ancestral Y, the neo-Y thus finds itself relatively often in a female. As a consequence, the
linkage disequilibrium between the novel masculinizing allele and the sex-antagonistic allele beneficial to males is reduced,
favoring an increase in the frequency of the ancestral Y chromosome and eventually leading to the maintenance of both the
ancestral and the neo-Y. Parameters are as in Figure 2. The difference between the invasion and fixation boundaries for

74 =1, = 0.05 (dots) and those for r4, =r, = 0.25 (lines) is again marginal.
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A recessive sex-determination mutation, heterogamety switches

To conclude this section, we consider the case that the mutant sex-determination allele is a recessive masculinizing allele. A
fully recessive sex-determination allele cannot increase in frequency from arbitrarily low initial frequencies. However, a
recessive allele could first increase in frequency by drift. Once a sufficiently high frequency has been reached, the allele will
be expressed in homozygotes such that selection can cause the frequency to increase further. By means of numerical simula-
tion, we determined the threshold frequency of the recessive allele above which selection would lead it to increase in fre-
quency, for given ratios of the selection coefficients s /s¥ (Figure 4). For example, if sex antagonistic selection at the

m

autosomal locus is twice as strong as sex-antagonistic selection at the sex-linked locus (i.e., s¥ =2s7), genetic drift must
bring the frequency of the novel sex-determination above 17% before selection can lead to a further increase.

o
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Figure 4 | Invasion threshold frequencies for a recessive masculinizing allele. Depending on the intensity of sex-antagonis-
tic selection at the autosomal locus relative to that at the sex linked locus (horizontal axis; as in Figure 2, we took s§ = —s
and sf = —sM), genetic drift must bring the frequency of the novel, recessive sex determination allele above a threshold
frequency (vertical axis), before selection can lead to a further increase of the frequency of the mutation. Dots represent
simulation results, the dashed line shows a power-law fit based on the five leftmost data points (numerical inaccuracies
disproportionately affect the rightmost datapoints). The fitted line intersects the y-axis at 0.75, the theoretically expected
value when the autosomal and sex-linked sex-antagonistic loci have identical selection coefficients. Other parameters are as
in Figure 2.

Even though the conditions for invasion of a recessive masculinizing allele are quite restrictive (Figure 4), once genetic drift
has triggered the invasion of the masculinizing mutation, the mutant allele is very likely to spread to fixation. In that case, the
ancestral Y will disappear. The sex-determination that results is a ZZ/ZW system governed by a recessive sex-determination
locus. Invasion of a recessive masculinizing allele is not the only mechanism that could lead to heterogamety switches. Also
the invasion of a novel, (partially) dominant feminizing allele could induce a switch from male to female heterogamety.
Invasion of such an allele would not be dependent on genetic drift, but it would be opposed by selection against YY individu-
als. Since such selection cannot easily be incorporated in our present analysis, we leave the investigation of heterogamety
switches involving dominant feminizing alleles for future consideration.
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