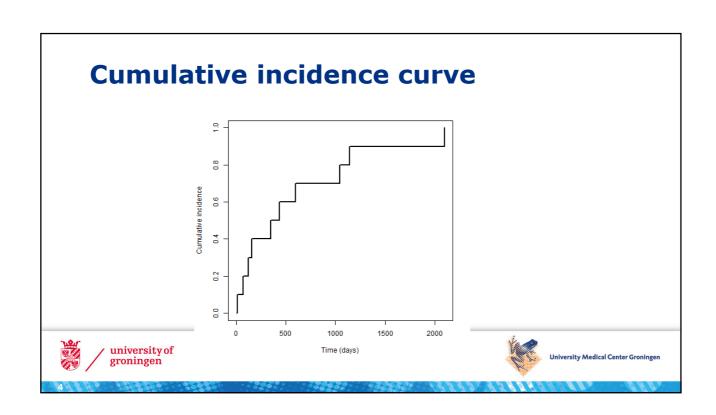


Survival analysis - definitions

- Survival analysis concerns the analysis of time-to-event data
 - Time from birth to disease onset (years)
 - Time from treatment initiation to death (days)
- Cumulative incidence *I(t)*: proportion of subjects with an event time less than or equal to *t*
 - I(365): proportion of patients that die within one year of treatment initiation
- Cumulative incidence curve: the plot of I(t) against t

university of

groningen


University Medical Center Groninge

Estimation of I(t) when all occurences of the event of interest are observed

- Event times in days (n=10): 123, 345, 1143, 12, 158, 1045, 2098, 67, 432, 600
- *I(t)* can readily be estimated by dividing the number of subjects with an event time smaller than or equal to *t* by the total sample size
 - I(183) = 3/10 = 0.3
 - I(365) = 5/10 = 0.5

What makes the analysis of time-toevent data special: right-censoring

- A subject's event time is right censored when the recording of his event time is terminated before he has experienced the event of interest
 - Loss to follow-up: subjects withdraw from the study before they experience the event of interest
 - Administrative censoring: the study is closed before each subject has experienced the event of interest

Estimation of I(t) when event times are right-censored

- Right-censored observations (n=10): 123, 345, 560*, 12, 101*, 505*, 2098, 67, 303*, 600
- How to estimate I(t) in the presence of rightcensoring?
 - 1 minus Kaplan-Meier estimator

1 - Kaplan-Meier estimator: example

time (t _j)	n.risk (n _j)	n.event (d _j)	S(t _j -)	$h(t_j) = d_j/n_j$	$p(t_j) = h(t_j)^*S(t_{j^-})$
12	10	1	1	1/10	1* 1/10 = 0.1
67	9	1	1 - 0.1 = 0.9	1/9	0.9 * 1/9 = 0.1
101	8	0	0.9 - 0.1 = 0.8	0/8	0.8 * 0/8 = 0
123	7	1	0.8 - 0 = 0.8	1/7	0.8 * 1/7 = 0.114

<u>n.risk at time t_i </u> number of subjects that are still in follow-up and 'alive' just before t_j

$$I(t) = \sum_{j: t_j \le t} p(t_j)$$

One minus Kaplan-Meier estimator: assumptions

- Uninformative censoring: subjects under observation have the same risk of experiencing the event of interest than subjects whose event time got censored
 - Subjects that are still in the risk set at a certain time t can be considered to be representative for all subjects that are still 'alive' at time t

Competing risks

- A competing risk is an event other than the event of interest whose occurrence precludes (prevents) the event of interest from occurring
- Example 1:
 - Event of interest: cardiovascular-related death
 - Competing event: non-cardiovascular-related death
- Example 2:
 - Event of interest: hospitalization because of heart failure
 - Competing event: all-cause death

Cumulative incidence curves in the presence of competing risks: approach 1 (one minus Kaplan-Meier estimator)

- 1. Treat the event times of subjects that experience a competing event as right-censored
- 2. Use the one minus Kaplan-Meier estimator to estimate the cumulative incidence curve for the event of interest

What does this estimate mean?

- Censoring because of a competing risk is informative
 - Subjects that are still under observation have some risk of experiencing the event of interest
 - Subjects whose event time got censored because of the occurence of a competing risk will **CERTAINLY NOT** experience the event of interest
- The one minus Kaplan-Meier estimate reflects the cumulative incidence for the event of interest under the assumption that all competing risks have been eliminated

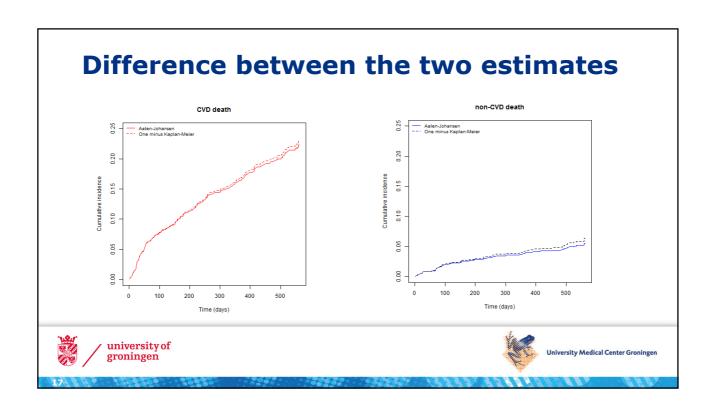
Cumulative incidence curves in the presence of competing risks: approach 2 (Aalen-Johansen estimator)

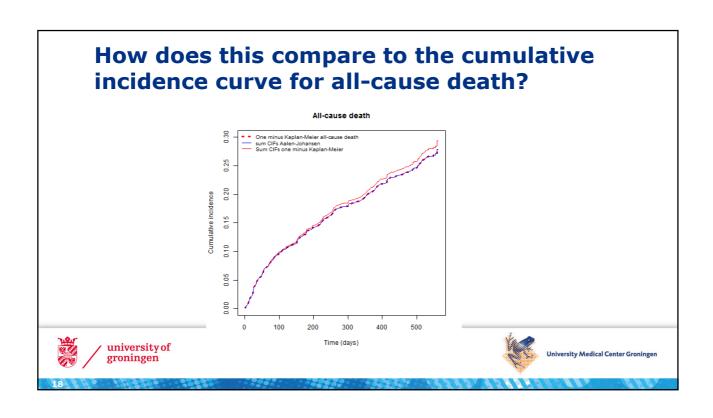
- 1. Define the event time as the time of occurrence of **any** event (i.e., either the event of interest or a competing event)
- 2. Define the risk set n_j at time t_j as the number of subjects that are still in follow-up and 'alive' (i.e., have neither experienced the event of interest nor any of the competing events) just before t_i
- 3. Estimate the probability of experiencing the event of interest at time t_j conditional on being 'alive' just before t_j by dividing the number of subjects experiencing the event of interest at time t_i by n_i
- 4. Estimate the unconditional probability of experiencing the event of interest at time t_j by multiplying $h(t_j)$ by the probability of being 'alive' just before time t_i
- 5. Estimate the cumulative incidence I(t) by summing over all values of $h(t_j)$ between baseline and time t

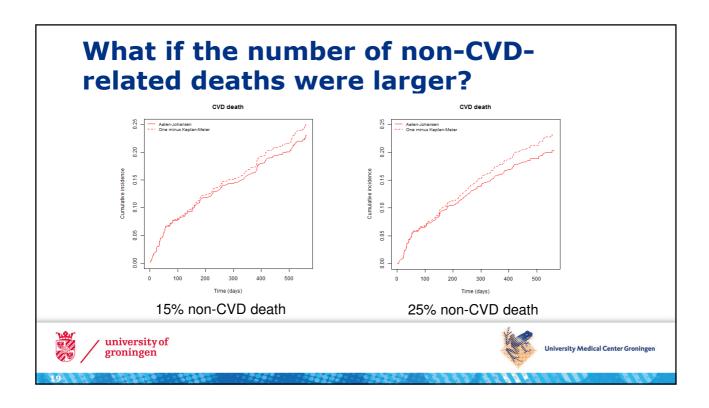
ORIGINAL INVESTIGATION

Effect of Moderate or Intensive Disease Management Program on Outcome in Patients With Heart Failure

Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH)


Outcome	Total Patients (N=1023)	Control Group (n=339)	Basic Support Group (n=340)	Intensive Support Group (n=344)
Primary end points				
Death or hospitalization because of HF	411 (40)	141 (42)	138 (41)	132 (38)
No. of days lost in 18 months	107 959	39 960	33 731	34 268
No. of days lost per patient, median (25th	10.0 (0.0-109.0)	12.0 (0.0-173.0)	9.0 (0.0-88.0)	7.5 (0.0-109.0)
and 75th percentiles)				
Other events				
Hospitalization				
All causes	567 (55)	181 (53)	192 (57)	194 (56)
Cardiovascular disease	433 (42)	143 (42)	143 (42)	147 (43)
HF	260 (25)	84 (25)	84 (25)	92 (27)
No. of hospitalizations				
All causes	1161	376	377	408
Cardiovascular disease	746	255	236	255
HF	375	120	121	134
Death				
All causes	272 (27)	99 (29)	90 (27)	83 (24)
Cardiovascular disease	219 (21)	72 (21)	76 (22)	71 (21)
Noncardiovascular disease	38 (4)	19 (6)	10 (5)	9 (3)
Unknown cause	15 (2)	8 (2)	4 (1)	3 (1)





Cumulative incidence curve for all-cause death in the COACH study (n=1023) All-cause death • Initiating event (time 0.30 origin): hospital discharge 0.25 • Event of interest: death by 0.20 any cause 0.15 0.10 • Event time: calendar time of death - calendar time of 90.0 hospital discharge (days) 0.00 university of University Medical Center Groningen groningen

Summary

- Although the one minus Kaplan-Meier estimator is frequently applied to estimate cumulative incidence curves, it gives biased results in the presence of competing risks
- The amount of bias gets larger in populations where subjects are at high risk of experiencing a competing event

