Help! Statistics! Mediation Analysis

Sacha la Bastide-van Gemert

Medical Statistics and Decision Making

Epidemiology, UMCG

Help! Statistics! Lunch time lectures What? Frequently used statistical methods and questions in a manageable timeframe for all researchers at the UMCG. No knowledge of advanced statistics is required. When? Lectures take place every 2nd Tuesday of the month, 12.00-13.00 hrs. Who? Unit for Medical Statistics and Decision Making Where? What? Who? Mar 14, 2017 Room 16 Mediation analysis S la Bastide Apr 11, 2017 Rode Zaal Basics of survival analysis D. Postmus May 9, 2017 Rode Zaal Multiple linear regression; some do's H. Burgerhof and don'ts Multiple testing Slides can be downloaded from: http://www.rug.nl/research/epidemiology/download-area

Mediation analysis: overview

- Introduction: example (smoking during pregnancy, birth-weight)
- Traditional approaches and their limitations (B&K, Sobel's test)
- Better alternative: bootstrapping test
- Underlying assumption: uncorrelated errorterms
 - > Intermezzo: causal graphs
- Causal mediation analysis
 - > Intermezzo: the counterfactual framework
- R package ``mediation'': application and sensitivity analyses
- Concluding remarks & literature references

Mediation analysis Introduction and terminology

 Mediation analysis: exploring the underlying mechanism of a relationship by which one variable (exposure/treatment T) influences another variable (outcome Y) through a third variable (mediator M):

- Mediator M is a variable on the causal pathway from T to Y
- Total effect, direct effect and indirect effect
- Full and partial mediation

Linear systems (under assumptions): total effect c on T on Y consists of direct effect c' and indirect effect a*b

Baron and Kenny's "Causal Steps approach"

B&K (1986) popularized the "causal steps approach" to distinguish mediation:

Step 1: H_0 : c=0 has to be rejected, i.e. c (``total effect of T on Y") must be significant

$$Y = \beta_{10} + cT + \varepsilon_1$$

Step 2: H_0 : a = 0 has to be rejected, i.e. a must be significant

$$M = \beta_{20} + aT + \varepsilon_2$$

Step 3: H_0 : b=0 has to be rejected, i.e. b is significant AND c' should be smaller in absolute value than the total effect c

$$Y = \beta_{30} + c'T + bM + \varepsilon_3$$

Then: the non-zeroness of an intermediate a*b effect is logically claimed to be existing

B&K's approach has been criticized a lot (but is still used!):

- step 1 ("significant total effect") is not necessary: the pathways could cancel each other out, and c' becomes noticeable only when the mediator is controlled for
- can easily `miss' mediating effects when not all paths are included in the formal model:

- based <u>not</u> on the quantification of the intervening effect but on separate tests of the paths T→M and M→Y
- lowest in power among methods for testing intervening variable effects

Sobel's test

Sobel's test: tests whether the mediation effect is significantly different from 0

$$z = \frac{a*b}{\sqrt{b^2 s_a^2 + a^2 s_b^2}}$$

with s_a and s_b se's of the effects

, assuming a normal distribution of z

Better than B&K: Sobel's test is more accurate than B&K steps, actually tests the thing we are looking for!

But: very low statistical power due to normality assumption (too strong!) and inadequate estimation of the se of a * b.

Hayes (and many others): use bootstrap test of the indirect effect instead!

Intermezzo: causal graphs (1) Causal graphs: a graphical representation of causal relationships between variables Parents, children, ancestors and descendants Z is a collider: a particular node on a path such that both the preceding and subsequent nodes on the path have directed edges going into that node here: X Z Y Y In general, a path on a causal diagram does not need to follow the directions of the arrows: Z-X-A, B-A-X Any path which contains a collider, is called a blocked path A-X-Z-Y (Z is a collider on this path); otherwise unblocked B-A-X-Z

Intermezzo: causal graphs (3) Conditioning on a variable is graphically represented by placing a box around that variable Conditional on its parents, a variable C will be independent of all variables which are not descendants of C smoking yellow fingers

Intermezzo: the counterfactual framework

Counterfactual/potential outcomes: the big "what if?"

Example: baby from mother that actually smoked (T=t=1):

"What would this baby's birth-weight have been

if its mother did not smoke?"

Unobservable! mother smoked (parallel universe...)

M(t) : potential value of mediator under treatment status T=t Y(t,m) : potential value of outcome for T=t and mediator value M=m

Y(t,m): potential value of outcome for T=t and mediator value M=m

Actual observed variables M_l and Y_l for a subject i can be rewritten as: $M_l = M_l(T_l) \qquad \text{and} \qquad Y_l = Y_l(T_l, M_l(T_l))$

The concept of counterfactuals provides a better definition of the causal effects involved...

Here: T=0,1, but generalizable to arbitrary reference points, T=t, T=t'

The Average Causal Mediation Effect (Natural Indirect Effect)

 $Y_i(t, M_i(1)) - Y_i(t, M_i(0)),$

Definition: causal mediation effect under treatment status t for subject i:

Example: baby from mother that actually smoked (T=t=1):

actual observed birth-weight, with observed mediator value $M_i(1)$ birth-weight potentially obtained if the mediator took the value as if the mother did <u>not</u> smoke

Average Causal Mediation (or Indirect) Effect (ACME):

$$E\{Y(t, M(1)) - Y(t, M(0))\}, \text{ for } t = 0,1$$

ACME is the expected change in Y when one lets M change $\underline{as\ \emph{if}}\ T$ did, while holding T constant \to the effect of the T on Y through M

The Average Causal Direct Effect (Natural Direct Effect)

Definition: direct effect under treatment status t:

Example: baby from mother that actually smoked (T=t=1):

 $Y_i(1, M_i(t)) - Y_i(0, M_i(t)), \qquad t = 0,1$

actual observed birthweight

birthweight potentially obtained if its mother did not smoke, with unchanged mediator value M:(1)

Average Direct Effect (ADE):

$$E\{Y(1,M(t)) - Y(0,M(t))\}, \text{ for } t = 0,1$$

ADE is the expected change in Y when one lets T change, but M is held constant \rightarrow represents all effects of T on Y, other than through M

Total Causal Effect

Total Causal Effect (TCE):

$$E\{Y(1,M(1))-Y(0,M(0))\},\$$

i.e. expected increase in the outcome Y as the treatment changes from T=0 to T=1, while the mediator M is allowed to track that change

Now, for the good news:

... conveniently skipping mathematical mediation formulas, underlying theorems and their – rather intimidating – mathematical proofs...

ACME, ADE (and TCE) can be estimated!

 \dots by averaging over levels of M and measured covariates X (estimated by f.e. bootstrapping)

and at a relatively small cost: meeting (weaker version of) $\,\underline{\text{sequential ignorability assumption}}\,(\approx)$ 'uncorrelated errorterms")

Causal mediation analysis

Causal mediation analysis in a counterfactual framework hence provides:

- a general, nonparametrical (!) measure of mediation, including formal definitions of direct and indirect effects (ADE, ACME) which not only ...
- enhances understanding, but also allows...
- more & better estimation methods, improving validity, interpretation and
- application in a much wider range of models than the linear one (different types of variables, nonlinear effects (interaction, moderation...))
 - > the R package "mediation" provides just that!

NB: linear structural equation models (including B&K's approach) can be interpreted as an ACME estimator (adding parametric assumptions), so that:

$$\begin{aligned} \mathsf{ACME} &= \ a * b \\ \mathsf{ADE} &= \ c' \\ \mathsf{TCE} &= \ c = \ c' + a * b \end{aligned}$$

R package ``mediation"

models specified by

the researcher

Two statistical models are needed:

1) conditional distribution of M: f(M|T,X)

f.e.: $model.m \leftarrow Im(M \sim T + X, data = ...)$

2) conditional distribution of Y: f(Y|T, M, X)

f.e.: $model.y \leftarrow Im(Y \sim T + M + X, data = ...)$

Then mediate(model.m,model.y) uses these models to estimate ACME, ADE and TCE,

with Cl's based on bootstrapping (or other simulation methods)

>>> non-parametrically, works for a large number of types of models/variables, works with interaction terms (f.e. T^*M), with nonlinear effects of M on Y, ...

R package ``mediation" sensitivity analyses Sequential ignorability assumption: `the error terms ε_{M} and ε_{Y} from model.m and model.y are uncorrelated" Sensitivity analysis: let's say they are not! ("There is an unobserved confounder U, responsible for part of the variances of both M and Y") $\rho = corr(\varepsilon_{\rm M}\,,\,\varepsilon_{\rm Y}), \quad \rho \ {\rm is \ sensitivity \ parameter}$ How does ACME change when ρ changes? For which values of ρ does the ACME's CI contain zero? > quantify how large U must be in order for your original conclusion to be reversed

Concluding remarks

- Traditional mediation analysis approaches (B&K, Sobel) should be avoided, newer methods (f.e. based on bootstrapping of the mediation effect) provide better estimation through more reliable CI's
- Within the counterfactual framework: causal mediation analysis provides applications beyond simple linear models: nonlinear effects, moderation and interaction effects, various types of outcomes variables/models, mixed effects models, ...
- R package "mediation": offers two estimation approaches (bootstrapping or approximate asymptotic distribution-based) and additional sensitivity analyses for testing robustness of violation of the assumptions

Literature on (causal) mediation:

- T.J. VanderWeele, J.M. Robins, `Four types of effect modification. A classification based on directed acyclic graphs', *Epidemiology* 18 (2007), 561-568
- A.F. Hayes, 'Beyond Baron and Kenny: statistical mediation analysis in the new millennium', *Communication Monographs* 76 (2009) 408-420

 J. Pearl, 'The mediation formula: a guide to the assessment of causal pathways in nonlinear models', in: C. Berzuini, D. Dawid, L. Bernardinelli (eds) *Causality: statistical* perspectives and applications (2012)
- J. Pearl, 'Interpretation and identification in causal mediation', *Psychological Methods* 19 (2014) 459-481
- K. Imai, et al, 'Identification, inference and sensitivity analysis for causal mediation effects', *Statistical Science* 25 (2010) 51-71
- L. Küpers et al, `DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring', *Int.J. Epidemiol.* 44 (2015) 1224-1237
- ... S. Vansteelandth: R package ``medflex'

Next Help! Statistics! Lunchtime Lecture

Basics of survival analysis

Douwe Postmus

April 11, 2017 Rode Zaal

