Emergent properties of bio-physical self-organization in streams
Self-organization, the formation of spatial patterns due to ecological interactions, is a widespread phenomenon in natural ecosystems. Theoretical studies indicate that self-organization is an important regulating process in ecosystems. For instance, it can make ecosystems more resistant to disturbance. Studying these emergent effects of self-organization helps us manage and protect nature against climate change and human impacts. In her thesis, Loreta Cornacchia studied spatial self-organization of vegetation in rivers. In particular, I focused on the interaction between water flow and submerged vegetation, and its effects on river flows and biodiversity. My research indicates that vegetation buffers river ecosystems against changing hydrological conditions. These hydrological conditions can range from low flows to high flows (floods). At the same time, submerged vegetation supports the river's biodiversity. By maintaining habitat diversity, it creates conditions that are favourable for other species. Hence, this self-organization process might provide a nature-based solution to flow regulation. These findings suggest there might be a need to reconsider current management practices that typically remove vegetation because it is perceived to increase the risk of river flooding. As global climate change and human modifications to rivers are expected to increase hydrological extremes, this study shows how self-organized river ecosystems can adapt to maintain suitable flow conditions while also supporting high aquatic biodiversity.

Dissertation: http://hdl.handle.net/(...)1e-aebb-ad676e974095
Last modified: | 23 February 2021 08.47 a.m. |
More news
-
15 October 2025
Blaauw Sterrenwacht geopend tijdens Nacht van de Nacht
De Blaauw Sterrenwacht van de Rijksuniversiteit Groningen is geopend tijdens de Nacht van de Nacht op zaterdag 25 oktober 2025. Tijdens deze nacht, waarin we de klok een uur terugzetten, kunnen bezoekers sterrenkijken en zijn er allerlei...
-
08 October 2025
Not all plastic needs to be bio-based or biodegradable
Per person, we throw away about 33 kilos of plastic packaging per year. Professor of Polymer Chemistry Katja Loos is working on a more sustainable future for plastics - by looking at more than the material itself.
-
06 October 2025
The GenAI-bubble will burst, but don’t give up on AI altogether
'People keep promoting the belief that generative AI provides universal tools that are capable of much more,’ says Michael Biehl, Professor of Machine Learning. ‘Sooner or later, the genAI bubble will burst,’ he is certain. But that doesn’t mean all...