Catalytic promiscuity of 4-oxalocrotonate tautomerase. Discovery and characterization of C-C bond-forming activities
PhD ceremony: Ms. E. Zandvoort, 14.30 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Catalytic promiscuity of 4-oxalocrotonate tautomerase. Discovery and characterization of C-C bond-forming activities
Promotor(s): prof. W.J. Quax, prof. G.J. Poelarends
Faculty: Mathematics and Natural Sciences
A powerful, recently emerged theme that is highly relevant to the design of new enzymes is that of catalytic promiscuity, where an enzyme catalyzes an alternative reaction (or reactions) in addition to its biologically relevant one. The work of Ellen Zandvoort shows that screening for new promiscuous reactions of an enzyme on the basis of its unique characteristics(the presence of a catalytic amino-terminal proline that has the reactivity to form enamines with carbonyl compounds) is a powerful strategy to find new synthetically useful catalytic transformations.
Enzyme promiscuity has great promise as a source of synthetically useful catalytic transformations. The challenge is to use the understanding of reaction mechanisms to discover new promiscuous reactions in existing enzymes, and exploiting this promiscuity to create tailor-made biocatalysts.
The enzyme 4-oxalocrotonate tautomerase (4-OT) naturally catalyzes tautomerization reactions and uses its unique N-terminal proline (pKa~6.4) as catalytic base. Inspired by the success of L-proline in organocatalysis of C-C bond-forming reactions, Zandvoort explored the proline-based tautomerase 4-OT for its ability to catalyze unnatural C-C bond-forming reactions. She found that 4-OT is highly promiscuous and catalyzes C-C bond formation in several aldol (condensation) reactions and a Michael-type addition reaction. Interestingly, the product of the latter reaction is 4-nitro-3-phenyl-butanal, an important precursor for the anti-depressant Phenibut (4-amino-3-phenyl-butanoic acid). In addition, she discovered a promiscuous cis-trans isomerization activity. Characterization of the different activities indicated that the N-terminal proline residue of 4-OT is indeed essential for all of these promiscuous reactions, and catalysis likely takes place through an enamine intermediate.
Last modified: | 13 March 2020 01.00 a.m. |
More news
-
15 September 2025
Successful visit to the UG by Rector of Institut Teknologi Bandung
The Rector of Institut Teknologi Bandung (ITB), Prof Tatacipta Dirgantara, paid a 3-day visit to the UG.
-
10 September 2025
Funding for Feringa and Minnaard from National Growth Fund project Big Chemistry
Two UG research projects have received funding from the National Growth Fund project Big Chemistry via NWO.
-
09 September 2025
The carbon cycle as Earth’s thermostat
Earth's natural carbon cycle becomes unbalanced if we, humans, continue to release extra carbon dioxide (CO2) into the atmosphere. In this overview article about the carbon cycle, you can find out how Earth generally keeps itself in balance and how...