Fabrication and applications of supercharged, unfolded proteins
PhD ceremony: Ms. A. Kolbe, 14.30 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Fabrication and applications of supercharged, unfolded proteins
Promotor(s): prof. A. Herrmann
Faculty: Mathematics and Natural Sciences
This thesis describes the design and fabrication of supercharged, unfolded proteins (SUPs) based on elastin-like peptides and some of their possible applications.
These charged protein polymers (= protein polyelectrolytes) are less toxic and better defined than commonly used polyelectrolytes and are therefore appealing candidates for applications in biomedicine. Due to electrostatic attraction between oppositely charged SUPs they can be transferred into micro- and nanometer sized objects. To illustrate this, we assembled hollow capsules, which might serve as protective nanocontainers for bioactive compounds, such as drugs or proteins. Furthermore, we showed that we can incorporate a functional protein linked to a SUP variant into the capsule wall. We fabricated capsules containing green fluorecent protein (GFP), which is visible under a fluorescence microscope, and studied the uptake of these capsules by living cells in culture. In the same way, one could think of equipping the capsule wall with a bioactive protein or a targeting protein that directs the capsule with its cargo to a specific cell type that needs to be treated. In another approach, we assessed how the attachment of SUPs with various amounts of charges influences the detection of GFP by charge-sensitive detectors. The detectors we used can sense compounds at very low concentrations and therefore have great potential for detecting heart attacks or cancer at an early stage. Our findings can help to improve the performance of these detectors.
Last modified: | 13 March 2020 01.02 a.m. |
More news
-
21 November 2024
Dutch Research Agenda funding for research to improve climate policy
Michele Cucuzzella and Ming Cao are partners in the research programme ‘Behavioural Insights for Climate Policy’
-
13 November 2024
Can we live on our planet without destroying it?
How much land, water, and other resources does our lifestyle require? And how can we adapt this lifestyle to stay within the limits of what the Earth can give?
-
13 November 2024
Emergentie-onderzoek in de kosmologie ontvangt NWA-ORC-subsidie
Emergentie in de kosmologie - Het doel van het onderzoek is oa te begrijpen hoe ruimte, tijd, zwaartekracht en het universum uit bijna niets lijken te ontstaan. Meer informatie hierover in het nieuwsbericht.