Radium ion spectroscopy towards atomic parity violation in a single trapped ion
PhD ceremony: Mr. G.S. Giri, 16.15 uur, Aula Academiegebouw, Broerstraat 5, Groningen
Dissertation: Radium ion spectroscopy towards atomic parity violation in a single trapped ion
Promotor(s): prof. K. Jungmann
Faculty: Mathematics and Natural Sciences
An experimental set up was developed to precisely measure atomic parity violation in a single trapped radium ion and to extract the Weinberg angle in the Standard Model of particle physics at the lowest possible momentum transfer. A series of short-lived radium isotopes 209 - 214Ra with nuclear spins 0, 1/2, and 5/2 was produced in fusion evaporation reactions using inverse kinematics. These isotopes were stopped and thermalized to singly charged ions in a Thermal Ionizer, mass separated in a Wien Filter, cooled and stored in a gas filled Radio Frequency Quadrupole trap. Atomic spectroscopic information such as hyperfine structure, isotope shift, and lifetime from optical precision measurements provide necessary experimental input for improving the precision of atomic structure calculation below the percent level of ac-curacy. This is indispensable for extracting the Weinberg angle. Hyperfine structure intervals of the metastable 6d 2D3/2 states and the isotope shifts of the 6d 2D3/2 - 7p 2P1/2 and 6d 2D3/2- 7p 2P3/2 transitions were determined. A lower experimental limit for the lifetime of 232(4) ms of the metastable 6d 2D5/2 state was established. The experimental pursuits to perform trapping and laser cooling of a single radium ion are in progress towards the precision measurement of atomic parity violation.
Last modified: | 13 March 2020 01.09 a.m. |
More news
-
15 September 2025
Successful visit to the UG by Rector of Institut Teknologi Bandung
The Rector of Institut Teknologi Bandung (ITB), Prof Tatacipta Dirgantara, paid a 3-day visit to the UG.
-
10 September 2025
Funding for Feringa and Minnaard from National Growth Fund project Big Chemistry
Two UG research projects have received funding from the National Growth Fund project Big Chemistry via NWO.
-
09 September 2025
The carbon cycle as Earth’s thermostat
Earth's natural carbon cycle becomes unbalanced if we, humans, continue to release extra carbon dioxide (CO2) into the atmosphere. In this overview article about the carbon cycle, you can find out how Earth generally keeps itself in balance and how...