Skip to ContentSkip to Navigation
About us Latest news News News articles

Silencing Pseudomonas virulence

09 September 2011

PhD ceremony: Ms. E. Papaioannou, 13.15 uur, Aula Academiegebouw, Broerstraat 5, Groningen

Dissertaton: Silencing Pseudomonas virulence

Promotor(s): prof. W.J. Quax

Faculty: Mathematics and Natural Sciences

 

The use of antibiotics in the treatment of bacterial diseases has led to the emergence of antibiotic-resistant “superbugs”. For preventing this emergence of resistant bacteria, alternative treatment methods are required. Evelina Papaiaoannou invented such a method.

By understanding the mechanism by which the Gram-negative opportunistic pathogen Pseudomonas aeruginosa imposes its virulence, potential targets for alternative antimicrobial therapy to the often-fatal infections caused by this pathogen can be identified. Today, we appreciate that P. aeruginosa imposes its virulence via a tightly controlled cell-to-cell communication mechanism referred to as quorum sensing (QS) through diffusible signal molecules referred to as acyl-homoserine lactones (AHL). Interfering with these signal molecules, either by preventing their synthesis and/or accumulation or by prohibiting their binding to their cognate receptor, offers a promising strategy for controlling and eradicating Pseudomonas-related infections.

Prevention of AHL accumulation can be achieved by the degradation of these molecules. Papaiaoannou made clear that there are two groups of enzymes known to degrade AHLs: (1) AHL-lactonases, which hydrolyse the lactone ring and (2) AHL-acylases, which hydrolyse the amide bond between the acyl chain and the homoserine lactone in the AHL molecule, thus generating the corresponding free fatty acid and the homoserine lactone. Papaiaoannou proved P. aeruginosa PAO1 possesses at least three genes encoding for AHL-acylases that are able to degrade the 3-oxo-C12-HSL signal molecule produced by the pathogen itself. These AHL-acylases are thereby able to silence the communication system of this opportunistic pathogen and may therefore serve as potential antimicrobials against Pseudomonas infections.

 

Last modified:13 March 2020 01.09 a.m.
Share this Facebook LinkedIn
View this page in: Nederlands

More news

  • 17 July 2025

    Veni-grants for eleven UG researchers

    The Dutch Research Council (NWO) has awarded a Veni grant of up to €320,000 each to eleven researchers of the University of Groningen and the UMCG: Quentin Changeat, Wen Wu, Femke Cnossen, Stacey Copeland, Bart Danon, Gesa Kübek, Hannah Laurens, Adi...

  • 14 July 2025

    ERC Proof of Concept grant for Kottapalli and Covi

    Professors Ajay Kottapalli and Erika Covi have received Proof of Concept grants from the European Research Council (ERC).

  • 10 July 2025

    Dutch Research Agenda funding for nanomedicine research

    Prof Dr Anna Salvati, Dr Christoffer Åberg and Prof Dr Siewert-Jan Marrink have been granted a National Science Agenda (NWA) funding to further develop life-saving drugs based on nanotechnology with the NanoMedNL consortium.