Enhanced performance of single and double junction plastic solar cells
PhD ceremony: Mr. D.J.D. Moet, 13.15 uur, Doopsgezinde kerk, Oude Boteringestraat 33, Groningen
Dissertation: Enhanced performance of single and double junction plastic solar cells
Promotor(s): prof. P.W.M. Blom
Faculty: Mathematics and Natural Sciences
In the most efficient plastic solar cells to date, sunlight is absorbed in an ultrathin layer of a semiconducting polymer mixed with an n-type organic material. Collected photons are directly converted into electricity via the complex processes of generation, dissociation, transport and extraction of electric charges. The power conversion efficiency of plastic solar cells strongly depends on the optical and electronic properties of the utilized polymer. In many cases, the performance is limited due to impediments in one or more of the processes mentioned above.
This work studies the device physical origin of such performance limitations for various polymer-based photovoltaic systems and discusses how these can be minimized. Based on experimental characterization and device modeling, it is shown how molecular weight, choice of processing solvent and chemical side-reactions during fabrication can affect the operation of single-layer plastic solar cells.
Moreover, we show that in specific cases optical and electronic losses can be reduced simultaneously by using a device structure with two photoactive layers. Careful design of the required middle electrode enables such double junction cells to show enhanced performance compared to optimized single layer devices. These results and the outcome of extensive optoelectronic modeling path the way towards efficient solution-processed tandem polymer solar cells that contain two complementary absorbing photoactive layers.
Last modified: | 13 March 2020 01.09 a.m. |
More news
-
25 April 2025
Leading microbiologist Arnold Driessen honoured
On 25 April 2025, Arnold Driessen (Horst, the Netherlands, 1958) received a Royal Decoration. Driessen is Professor of Molecular Microbiology and chair of the Molecular Microbiology research department of the Faculty of Science and Engineering at the...
-
24 April 2025
Highlighted papers April 2025
The antimalarial drug mefloquine could help treat genetic diseases such as cystic fibrosis, Duchenne muscular dystrophy, as well as some cancers.
-
22 April 2025
Microplastics and their effects on the human body
Professor of Respiratory Immunology Barbro Melgert has discovered how microplastics affect the lungs and can explain how to reduce our exposure.