Skip to ContentSkip to Navigation
About us Latest news News News articles

Characterization and role of UTF1 in embryonic stem and carcinoma cells. Implications for regulation of gene expression, chromatin structure and differentiation

08 July 2011

PhD ceremony: Mr. R.P. Thummer, 11.00 uur, Doopsgezinde kerk, Oude Boteringestraat 33, Groningen

Dissertation: Characterization and role of UTF1 in embryonic stem and carcinoma cells. Implications for regulation of gene expression, chromatin structure and differentiation

Promotor(s): prof. P.J.M. van Haastert

Faculty: Mathematics and Natural Sciences

 

In his thesis Rajkumar Thummer has investigated the role of Undifferentiated embryonic cell Transcription Factor 1 (UTF1) in regulating specific embryonic stem (ES) and carcinoma (EC) cell properties. ES and EC cells can differentiate into (almost for EC) all cell types present in the adult organism, i.e. pluripotency. In addition, ES cells are able to proliferate indefinitely through a process called self-renewal (after division, both daughter cells are equal to the mother cell). ES cells can be derived from the inner cell mass of blastocyst embryos, a developmental stage reached 3-4 days after fertilization in mice. EC cells have been isolated from different germ cell tumors.

The UTF1 gene is highly expressed in ES and EC cells and is required for proper differentiation of these cells. Here Thummer shows that the human UTF1 protein represses gene expression and has biochemical properties very similar to core histones; essential structural chromatin proteins. In the human population, sequence variants of the UTF1 gene are present and one of these variant UTF1 genes encodes a protein with decreased histone-like properties.

When ES or EC cells are generated with elevated UTF1 levels, their ability to properly differentiate is affected, a finding of Thummer also observed in ES and EC cells with reduced UTF1 levels. Summarizing, Thummers data show that UTF1 is a key chromatin component in ES and EC cells. His data propose that UTF1 is important for a chromatin organization that prevents aberrant gene expression and required for proper initiation of lineage-specific differentiation of ES and EC cells.

 

Last modified:13 March 2020 01.11 a.m.
Share this Facebook LinkedIn
View this page in: Nederlands

More news

  • 17 July 2025

    Veni-grants for eleven UG researchers

    The Dutch Research Council (NWO) has awarded a Veni grant of up to €320,000 each to eleven researchers of the University of Groningen and the UMCG: Quentin Changeat, Wen Wu, Femke Cnossen, Stacey Copeland, Bart Danon, Gesa Kübek, Hannah Laurens, Adi...

  • 14 July 2025

    ERC Proof of Concept grant for Kottapalli and Covi

    Professors Ajay Kottapalli and Erika Covi have received Proof of Concept grants from the European Research Council (ERC).

  • 10 July 2025

    Dutch Research Agenda funding for nanomedicine research

    Prof Dr Anna Salvati, Dr Christoffer Åberg and Prof Dr Siewert-Jan Marrink have been granted a National Science Agenda (NWA) funding to further develop life-saving drugs based on nanotechnology with the NanoMedNL consortium.