Removal of inorganic compounds via supercritical water: fundamentals and applications
PhD ceremony: Mr. I. Leusbrock, 14.30 uur, de Kanselarij, Turfmarkt 11, Leeuwarden
Title: Removal of inorganic compounds via supercritical water: fundamentals and applications
Promotor: prof. G.F. Versteeg
Faculty: Mathematics and Natural Sciences
Desalination is seen as one of the key technologies to satisfy the growing global water demand due to urbanization, population growth and depletion of natural water resources. One of the major drawbacks of current desalination technologies is the production of a liquid brine stream as a waste stream.
This thesis introduces supercritical fluids - a highly regarded technology in process engineering and chemical industry - in a new field: the treatment and purification of aqueous streams. The resulting technology - a new approach to remove inorganic compounds from these streams and to offer a way for desalination without the production of a liquid waste stream -, its basics, its options and potential are the tenor of this thesis. The separation principle of this approach is based on the changed solvation behavior of supercritical water. While water represents an excellent solvent at ambient conditions, it changes to a poor one at supercritical conditions (T > 647 K; p > 22.1 MPa). The decreased solubility of inorganic compounds leads to precipitation and formation of an additional solid phase. This behavior allows for treatment of saline streams without production of a waste stream; an option that current technologies like Reverse Osmosis and Multi-Stage-Flash do not offer. New and unique experimental data on behavior and solubility of inorganic compounds in supercritical water are presented. Relations between solubility, system parameters and properties of the inorganic compounds are shown. Process options and concepts are discussed regarding their potential, their sustainability and their synergy with other technologies.
Last modified: | 13 March 2020 01.11 a.m. |
More news
-
08 October 2025
Not all plastic needs to be bio-based or biodegradable
Per person, we throw away about 33 kilos of plastic packaging per year. Professor of Polymer Chemistry Katja Loos is working on a more sustainable future for plastics - by looking at more than the material itself.
-
06 October 2025
The GenAI-bubble will burst, but don’t give up on AI altogether
'People keep promoting the belief that generative AI provides universal tools that are capable of much more,’ says Michael Biehl, Professor of Machine Learning. ‘Sooner or later, the genAI bubble will burst,’ he is certain. But that doesn’t mean all...
-
01 October 2025
In Science Podcast: Ajay Kottapalli about seal whiskers and ultrasensitive sensors
'In Science' is the podcast of the University of Groningen. In this episode, we’re joined by Ajay Kottapalli, Associate Professor at the Engineering and Technology Institute Groningen and co-founder of the Sencilia startup.