NWO Vici Grant to Dr. Mirjam Dür
09 February 2010
Dr. Mirjam Dür of the Johann Bernoulli Institute for Mathematics and Computer Science at the University of Groningen has been awarded a prestigious NWO Vici grant of € 1.5 M. The Vici grants are the most substantial grants in the NWO Innovational Research Incentives Scheme. The subsidy is directed at promising young researchers who have completed their doctorate less than 15 years ago and who have shown that they have the ability to successfully develop their own innovative lines of research.
Dr. Dür is a Rosalind Franklin Fellow and an Assistant Professor of Mathematical Optimization at the University of Groningen. Her research deals with developing algorithmic methods to compute optimal solutions of mathematical optimization problems.
Optimization problems pop up in many practical applications, for example railway scheduling, telecommunication networks, personnel staffing, finance, but also in fields like the engineering sciences or molecular biology.
A typical problem in discrete optimization requires choosing the best solution from a large but finite set of possibilities, for example, the best order in which a salesperson should visit clients so that the route travelled is as short as possible. The difficulty is that the number of possibilities is usually very large, so that enumerating them one by one is not an option. A similar challenge occurs with problems that exhibit a large number of local optima while the practical application requires knowledge of the global optimum. This typically happens with models involving quadratic or other nonlinear functions.
In the last decades, mathematical methodologies to treat discrete models have seen an enormous progress, and so have techniques to deal with nonlinear models. However, as more and more practical applications become tractable, more and more problems appear which involve both discrete and continuous variables. For those problems, the necessary theory and algorithms are not yet satisfactory.
The Vici grant has been awarded for research on problems that involve both these features, discrete variables and nonlinear functions. The results of the project will lead to new powerful solution methods for classes of optimization problems that have up to now not been solvable in reasonable time.
See Mirjam Dür's personal website http://www.math.rug.nl/~mirjam/ for more information.
Dr. Dür is a Rosalind Franklin Fellow and an Assistant Professor of Mathematical Optimization at the University of Groningen. Her research deals with developing algorithmic methods to compute optimal solutions of mathematical optimization problems.
Optimization problems pop up in many practical applications, for example railway scheduling, telecommunication networks, personnel staffing, finance, but also in fields like the engineering sciences or molecular biology.
A typical problem in discrete optimization requires choosing the best solution from a large but finite set of possibilities, for example, the best order in which a salesperson should visit clients so that the route travelled is as short as possible. The difficulty is that the number of possibilities is usually very large, so that enumerating them one by one is not an option. A similar challenge occurs with problems that exhibit a large number of local optima while the practical application requires knowledge of the global optimum. This typically happens with models involving quadratic or other nonlinear functions.
In the last decades, mathematical methodologies to treat discrete models have seen an enormous progress, and so have techniques to deal with nonlinear models. However, as more and more practical applications become tractable, more and more problems appear which involve both discrete and continuous variables. For those problems, the necessary theory and algorithms are not yet satisfactory.
The Vici grant has been awarded for research on problems that involve both these features, discrete variables and nonlinear functions. The results of the project will lead to new powerful solution methods for classes of optimization problems that have up to now not been solvable in reasonable time.
See Mirjam Dür's personal website http://www.math.rug.nl/~mirjam/ for more information.
Last modified: | 22 August 2024 1.30 p.m. |
More news
-
03 July 2025
Erik Heeres receives RUG Impact Innovator Excellence Award
During the RUG Ventures Innovation Day, Prof. Erik Heeres of the Faculty of Science and Engineering (RUG) was awarded the Impact Innovator Excellence Award.
-
02 July 2025
€ 30 million investment for UG spin-off Portal Biotech
Portal Biotech, a pioneer in nanopore-based protein identification and sequencing technology, has raised € 30 million in Series A funding. The funding will support commercial rollout and team growth.
-
01 July 2025
‘Give seals space’
The Wadden Sea is constantly changing. Native animals need to be able to adapt in order to thrive in an environment that is shaped by the tides. By conducting research on seals in the area, PhD students Margarita Méndez-Aróstegui and Beatriz...